We study variance reduction schemes for stochastic generalized Nash equilibrium problems. Specifically, we consider two instances of the extragradient algorithm to find a Nash equilibrium and show their convergence under weaker assumptions than the literature. In the particular case where we can write the cost function as a finite sum, we also propose a novel approximation scheme that sensibly lowers the computational burden. Numerical simulations suggest that the performance of the new approximation scheme can improve the computations also in the fully stochastic (infinite) case.

On Variance-Reduced Extragradient Methods for Stochastic Generalized Nash Equilibrium Problems / Franci, Barbara. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 9:(2025), pp. 2333-2338. [10.1109/lcsys.2025.3615593]

On Variance-Reduced Extragradient Methods for Stochastic Generalized Nash Equilibrium Problems

Franci, Barbara
2025

Abstract

We study variance reduction schemes for stochastic generalized Nash equilibrium problems. Specifically, we consider two instances of the extragradient algorithm to find a Nash equilibrium and show their convergence under weaker assumptions than the literature. In the particular case where we can write the cost function as a finite sum, we also propose a novel approximation scheme that sensibly lowers the computational burden. Numerical simulations suggest that the performance of the new approximation scheme can improve the computations also in the fully stochastic (infinite) case.
File in questo prodotto:
File Dimensione Formato  
On_Variance-Reduced_Extragradient_Methods_for_Stochastic_Generalized_Nash_Equilibrium_Problems.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 837.27 kB
Formato Adobe PDF
837.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
EG_SGNEP_v6.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3004087