This paper introduces a framework for applying global parametric sensitivity analyses to energy system optimization models. The methodology presented is based on the optimal transport theory, enabling the identification of the most influential model inputs in shaping key outputs, such as energy mix composition, technology deployment, and system costs. The technique is applied to an instance for Italy within the Tools for Energy Model Optimization and Analysis energy planning tool. Algorithms devoted to managing inputs samplings, model runs and outputs postprocessing are developed and presented. Results are derived by exploring their dependency on the assumed energy scenarios and inputs variability. The findings of the paper show that demand levels and costs are the most influential inputs in business-as-usual scenarios, while techno-environmental constraints and efficiencies represent the most important inputs in decarbonization scenarios. Expanding input sampling ranges leads to the emergence of additional clusters of solutions, revealing alternative cost-optimal technology configurations and energy mixes that may not appear under narrower input variations. The proposed methodology helps in identifying parametrically the most impacting sources of uncertainty in energy planning and is openly available for future applications.

A framework for global sensitivity analysis in long-term energy systems planning using optimal transport / Nicoli, Matteo; Borgonovo, Emanuele; Di Cosmo, Valeria; Mosso, Daniele; Plischke, Elmar; Savoldi, Laura; De Queiroz, Anderson Rodrigo. - In: ENERGY. - ISSN 1873-6785. - 338:(2025). [10.1016/j.energy.2025.138788]

A framework for global sensitivity analysis in long-term energy systems planning using optimal transport

Nicoli,Matteo;Mosso,Daniele;Savoldi,Laura;
2025

Abstract

This paper introduces a framework for applying global parametric sensitivity analyses to energy system optimization models. The methodology presented is based on the optimal transport theory, enabling the identification of the most influential model inputs in shaping key outputs, such as energy mix composition, technology deployment, and system costs. The technique is applied to an instance for Italy within the Tools for Energy Model Optimization and Analysis energy planning tool. Algorithms devoted to managing inputs samplings, model runs and outputs postprocessing are developed and presented. Results are derived by exploring their dependency on the assumed energy scenarios and inputs variability. The findings of the paper show that demand levels and costs are the most influential inputs in business-as-usual scenarios, while techno-environmental constraints and efficiencies represent the most important inputs in decarbonization scenarios. Expanding input sampling ranges leads to the emergence of additional clusters of solutions, revealing alternative cost-optimal technology configurations and energy mixes that may not appear under narrower input variations. The proposed methodology helps in identifying parametrically the most impacting sources of uncertainty in energy planning and is openly available for future applications.
2025
File in questo prodotto:
File Dimensione Formato  
Record.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.69 MB
Formato Adobe PDF
8.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003832