To resolve the effective neutrino mass mβ with an energy resolution of 50 meV, the PTOLEMY experiment has proposed a novel transverse electromagnetic filtering process. Substantially reducing the kinetic energy of tritium β-decay electrons by counteracting motion from E×B and ∇B drift, the PTOLEMY filter requires an input of emitted electron kinematic information to generate a tailored, suitable electric field for each candidate. The collaboration proposes to extract these quantities by using antennae to observe the relativistic frequency shift of emitted cyclotron radiation as an electron transits by E×B drift through a uniform magnetic field region preceding the filter. Electrons must be contained within this region long enough such that an adequate integrated radiated power signal is received to accurately estimate these kinematics. This necessitates a controlled, slowed drift speed. This paper presents the experimental design to vary E×B drift speed of 14C β-decay electrons using a custom electrode field cage situated between the pole faces of an electromagnet. Matching our results with high-fidelity simulation, we deduce a capacity to increase particle time of flight by a factor of 5 in the field cage's slow drift region. Limited only by the dimensions of our system, we assert drift speed can be arbitrarily slowed to meet the needs of PTOLEMY's future detector. Actualizing such a system is a crucial milestone in developing the detector, enabling future cyclotron radiation measurements, filter implementation, and source injection.

A demonstration of slowed electron E×B drift for PTOLEMY / Farino, M.; Tan, A.; Apponi, A.; Betti, M. G.; Borghesi, M.; Casale, A.; Castellano, O.; Cavoto, G.; Cecchini, L.; Celasco, E.; Chung, W.; Cocco, A. G.; Colijn, A.; Corcione, B.; D'Ambrosio, N.; De Groot, N.; El Morabit, S.; Esposito, A.; Faverzani, M.; Ferella, A. D.; Ferri, E.; Ficcadenti, L.; Gamba, S.; Gariazzo, S.; Garrone, H.; Gatti, F.; Giachero, A.; Iwasaki, Y.; Kievsky, A.; Malnati, F.; Mangano, G.; Marcucci, L. E.; Mariani, C.; Mead, J.; Menichetti, G.; Messina, M.; Monticone, E.; Naafs, M.; Nucciotti, A.; Origo, L.; Pandolfi, F.; Paoloni, D.; Pepe, C.; Perez De Los Heros, C.; Pisanti, O.; Pofi, F. M.; Polosa, A. D.; Rago, I.; Rajteri, M.; Rossi, N.; Ruocco, A.; Tayyab, S.; Tozzini, V.; Tully, C.; Van Rens, I.; Virzi, F.; Visser, G.; Viviani, M.; Zeitler, U.; Zheliuk, O.; Zimmer, F.. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 20:8(2025). [10.1088/1748-0221/20/08/P08025]

A demonstration of slowed electron E×B drift for PTOLEMY

Cavoto G.;Cecchini L.;Celasco E.;Garrone H.;Malnati F.;Mariani C.;Pepe C.;Rajteri M.;Ruocco A.;Viviani M.;
2025

Abstract

To resolve the effective neutrino mass mβ with an energy resolution of 50 meV, the PTOLEMY experiment has proposed a novel transverse electromagnetic filtering process. Substantially reducing the kinetic energy of tritium β-decay electrons by counteracting motion from E×B and ∇B drift, the PTOLEMY filter requires an input of emitted electron kinematic information to generate a tailored, suitable electric field for each candidate. The collaboration proposes to extract these quantities by using antennae to observe the relativistic frequency shift of emitted cyclotron radiation as an electron transits by E×B drift through a uniform magnetic field region preceding the filter. Electrons must be contained within this region long enough such that an adequate integrated radiated power signal is received to accurately estimate these kinematics. This necessitates a controlled, slowed drift speed. This paper presents the experimental design to vary E×B drift speed of 14C β-decay electrons using a custom electrode field cage situated between the pole faces of an electromagnet. Matching our results with high-fidelity simulation, we deduce a capacity to increase particle time of flight by a factor of 5 in the field cage's slow drift region. Limited only by the dimensions of our system, we assert drift speed can be arbitrarily slowed to meet the needs of PTOLEMY's future detector. Actualizing such a system is a crucial milestone in developing the detector, enabling future cyclotron radiation measurements, filter implementation, and source injection.
File in questo prodotto:
File Dimensione Formato  
Farino_2025_J._Inst._20_P08025.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003822