Historically, the Mediterranean Sea has been an area of cultural exchange and maritime commerce. One out of many submerged archaeological sites is the Roman shipwreck that was discovered in 2006 off the coast of Santo Stefano al Mare, in the Ligurian Sea, Italy. The wreck was dated to the 1st century B.C. and consists of a well-preserved cargo ship of Roman amphorae that were likely used for transporting wine. In this study, we present the results of the first underwater survey of the wreck using an Autonomous Underwater Vehicle (AUV) industrialized by Graal Tech. The AUV was equipped with a NORBIT WBMS multibeam sonar, a 450 kHz side-scan sonar, and inertial navigation systems. The AUV conducted multiple high-resolution surveys on the wreck site and the collected data were processed using geospatial analysis methods to highlight local anomalies directly related to the presence of the Roman shipwreck. The main feature was an accumulation of amphorae, covering an area of approximately 10x7 m with a maximum height of 1 m above the seabed. The results of this interdisciplinary work demonstrated the effectiveness of integrating AUV technologies with spatial analysis techniques for underwater archaeological applications. Furthermore, the success of this mission highlighted the potential for broader applications of AUVs in the study of the seafloor, such as monitoring seabed movements related to offshore underground energy storage or the identification of objects lying on the seabed, such as cables or pipelines.
Exploring the Mediterranean: AUV High-Resolution Mapping of the Roman Wreck Offshore of Santo Stefano al Mare (Italy) / Benetatos, Christoforos; Costa, Stefano; Giglio, Giorgio; Mastrantuono, Claudio; Mo, Roberto; Peter, Costanzo; Pirri, Candido Fabrizio; Rovere, Adriano; Verga, Francesca. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - ELETTRONICO. - 13:10(2025). [10.3390/jmse13101921]
Exploring the Mediterranean: AUV High-Resolution Mapping of the Roman Wreck Offshore of Santo Stefano al Mare (Italy)
Benetatos, Christoforos;Giglio, Giorgio;Mo, Roberto;Peter, Costanzo;Pirri, Candido Fabrizio;Rovere, Adriano;Verga, Francesca
2025
Abstract
Historically, the Mediterranean Sea has been an area of cultural exchange and maritime commerce. One out of many submerged archaeological sites is the Roman shipwreck that was discovered in 2006 off the coast of Santo Stefano al Mare, in the Ligurian Sea, Italy. The wreck was dated to the 1st century B.C. and consists of a well-preserved cargo ship of Roman amphorae that were likely used for transporting wine. In this study, we present the results of the first underwater survey of the wreck using an Autonomous Underwater Vehicle (AUV) industrialized by Graal Tech. The AUV was equipped with a NORBIT WBMS multibeam sonar, a 450 kHz side-scan sonar, and inertial navigation systems. The AUV conducted multiple high-resolution surveys on the wreck site and the collected data were processed using geospatial analysis methods to highlight local anomalies directly related to the presence of the Roman shipwreck. The main feature was an accumulation of amphorae, covering an area of approximately 10x7 m with a maximum height of 1 m above the seabed. The results of this interdisciplinary work demonstrated the effectiveness of integrating AUV technologies with spatial analysis techniques for underwater archaeological applications. Furthermore, the success of this mission highlighted the potential for broader applications of AUVs in the study of the seafloor, such as monitoring seabed movements related to offshore underground energy storage or the identification of objects lying on the seabed, such as cables or pipelines.File | Dimensione | Formato | |
---|---|---|---|
Benetatos_etal_jmse.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
9.45 MB
Formato
Adobe PDF
|
9.45 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3003754