We develop a scheme based on active learning to compute equilibria in a generalized Nash equilibrium problem (GNEP). Specifically, an external observer (or entity), with little knowledge on the multi-agent process at hand, collects sensible data by probing the agents’ best-response (BR) mappings, which are then used to recursively update local parametric estimates of these mappings. Unlike (Fabiani and Bemporad, 2024), we consider the realistic case in which the agents share corrupted information with the external entity for, e.g., protecting their privacy. Inspired by a popular approach in stochastic optimization, we endow the external observer with an inexact proximal scheme for updating the local BR proxies. This technique will prove key to establishing the convergence of our scheme under standard assumptions, thereby enabling the external observer to predict an equilibrium strategy even when relying on masked information.
Actively Learning Equilibria in Nash Games With Misleading Information / Franci, Barbara; Fabiani, Filippo; Bemporad, Alberto. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 9:(2025), pp. 312-317. [10.1109/lcsys.2025.3572421]
Actively Learning Equilibria in Nash Games With Misleading Information
Franci, Barbara;
2025
Abstract
We develop a scheme based on active learning to compute equilibria in a generalized Nash equilibrium problem (GNEP). Specifically, an external observer (or entity), with little knowledge on the multi-agent process at hand, collects sensible data by probing the agents’ best-response (BR) mappings, which are then used to recursively update local parametric estimates of these mappings. Unlike (Fabiani and Bemporad, 2024), we consider the realistic case in which the agents share corrupted information with the external entity for, e.g., protecting their privacy. Inspired by a popular approach in stochastic optimization, we endow the external observer with an inexact proximal scheme for updating the local BR proxies. This technique will prove key to establishing the convergence of our scheme under standard assumptions, thereby enabling the external observer to predict an equilibrium strategy even when relying on masked information.File | Dimensione | Formato | |
---|---|---|---|
Actively_Learning_Equilibria_in_Nash_Games_With_Misleading_Information.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
665.29 kB
Formato
Adobe PDF
|
665.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2503.13167v2.pdf
accesso riservato
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
498.87 kB
Formato
Adobe PDF
|
498.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3003670