We develop a scheme based on active learning to compute equilibria in a generalized Nash equilibrium problem (GNEP). Specifically, an external observer (or entity), with little knowledge on the multi-agent process at hand, collects sensible data by probing the agents’ best-response (BR) mappings, which are then used to recursively update local parametric estimates of these mappings. Unlike (Fabiani and Bemporad, 2024), we consider the realistic case in which the agents share corrupted information with the external entity for, e.g., protecting their privacy. Inspired by a popular approach in stochastic optimization, we endow the external observer with an inexact proximal scheme for updating the local BR proxies. This technique will prove key to establishing the convergence of our scheme under standard assumptions, thereby enabling the external observer to predict an equilibrium strategy even when relying on masked information.

Actively Learning Equilibria in Nash Games With Misleading Information / Franci, Barbara; Fabiani, Filippo; Bemporad, Alberto. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 9:(2025), pp. 312-317. [10.1109/lcsys.2025.3572421]

Actively Learning Equilibria in Nash Games With Misleading Information

Franci, Barbara;
2025

Abstract

We develop a scheme based on active learning to compute equilibria in a generalized Nash equilibrium problem (GNEP). Specifically, an external observer (or entity), with little knowledge on the multi-agent process at hand, collects sensible data by probing the agents’ best-response (BR) mappings, which are then used to recursively update local parametric estimates of these mappings. Unlike (Fabiani and Bemporad, 2024), we consider the realistic case in which the agents share corrupted information with the external entity for, e.g., protecting their privacy. Inspired by a popular approach in stochastic optimization, we endow the external observer with an inexact proximal scheme for updating the local BR proxies. This technique will prove key to establishing the convergence of our scheme under standard assumptions, thereby enabling the external observer to predict an equilibrium strategy even when relying on masked information.
File in questo prodotto:
File Dimensione Formato  
Actively_Learning_Equilibria_in_Nash_Games_With_Misleading_Information.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 665.29 kB
Formato Adobe PDF
665.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2503.13167v2.pdf

accesso riservato

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 498.87 kB
Formato Adobe PDF
498.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003670