We consider the stochastic generalized Nash equilibrium problem (SGNEP) with expected-value cost functions. Inspired by Yi and Pavel (2019), we propose a distributed generalized Nash equilibrium seeking algorithm based on the preconditioned forward-backward operator splitting for SGNEPs, where, at each iteration, the expected value of the pseudogradient is approximated via a number of random samples. Our main contribution is to show almost sure convergence of the proposed algorithm if the pseudogradient mapping is restricted (monotone and) cocoercive.

A distributed Forward–Backward Algorithm for stochastic generalized Nash equilibrium seeking / Franci, Barbara; Grammatico, Sergio. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 66:11(2021), pp. 5467-5473. [10.1109/tac.2020.3047369]

A distributed Forward–Backward Algorithm for stochastic generalized Nash equilibrium seeking

Franci, Barbara;
2021

Abstract

We consider the stochastic generalized Nash equilibrium problem (SGNEP) with expected-value cost functions. Inspired by Yi and Pavel (2019), we propose a distributed generalized Nash equilibrium seeking algorithm based on the preconditioned forward-backward operator splitting for SGNEPs, where, at each iteration, the expected value of the pseudogradient is approximated via a number of random samples. Our main contribution is to show almost sure convergence of the proposed algorithm if the pseudogradient mapping is restricted (monotone and) cocoercive.
File in questo prodotto:
File Dimensione Formato  
A_Distributed_ForwardBackward_Algorithm_for_Stochastic_Generalized_Nash_Equilibrium_Seeking-2.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 459.42 kB
Formato Adobe PDF
459.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1912.04165v2.pdf

accesso riservato

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 484.83 kB
Formato Adobe PDF
484.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
FB_TAC_TN_v2.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 425.65 kB
Formato Adobe PDF
425.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003588