We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE-seeking algorithm for monotone games that require one proximal computation (e.g., one projection step) and one pseudogradient evaluation per iteration. Our main contribution is to extend the relaxed forward-backward operator splitting by the Malitsky (Mathematical Programming, 2019) to the stochastic case and in turn to show almost sure convergence to an SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.
Stochastic Generalized Nash Equilibrium-Seeking in Merely Monotone Games / Franci, Barbara; Grammatico, Sergio. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:8(2022), pp. 3905-3919. [10.1109/tac.2021.3108496]
Stochastic Generalized Nash Equilibrium-Seeking in Merely Monotone Games
Franci, Barbara;
2022
Abstract
We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE-seeking algorithm for monotone games that require one proximal computation (e.g., one projection step) and one pseudogradient evaluation per iteration. Our main contribution is to extend the relaxed forward-backward operator splitting by the Malitsky (Mathematical Programming, 2019) to the stochastic case and in turn to show almost sure convergence to an SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.| File | Dimensione | Formato | |
|---|---|---|---|
|
Stochastic_Generalized_Nash_Equilibrium-Seeking_in_Merely_Monotone_Games-2.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
834.12 kB
Formato
Adobe PDF
|
834.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2002.08318v5.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
714.08 kB
Formato
Adobe PDF
|
714.08 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3003580
