We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE-seeking algorithm for monotone games that require one proximal computation (e.g., one projection step) and one pseudogradient evaluation per iteration. Our main contribution is to extend the relaxed forward-backward operator splitting by the Malitsky (Mathematical Programming, 2019) to the stochastic case and in turn to show almost sure convergence to an SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.

Stochastic Generalized Nash Equilibrium-Seeking in Merely Monotone Games / Franci, Barbara; Grammatico, Sergio. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:8(2022), pp. 3905-3919. [10.1109/tac.2021.3108496]

Stochastic Generalized Nash Equilibrium-Seeking in Merely Monotone Games

Franci, Barbara;
2022

Abstract

We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE-seeking algorithm for monotone games that require one proximal computation (e.g., one projection step) and one pseudogradient evaluation per iteration. Our main contribution is to extend the relaxed forward-backward operator splitting by the Malitsky (Mathematical Programming, 2019) to the stochastic case and in turn to show almost sure convergence to an SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.
File in questo prodotto:
File Dimensione Formato  
Stochastic_Generalized_Nash_Equilibrium-Seeking_in_Merely_Monotone_Games-2.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 834.12 kB
Formato Adobe PDF
834.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2002.08318v5.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 714.08 kB
Formato Adobe PDF
714.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003580