Urban heat islands (UHIs) increase urban warming and reduce outdoor thermal comfort due to changing surface characteristics and climate change. This study investigates the role of green walls (GWs) in mitigating UHI, improving outdoor thermal comfort, and reducing carbon emissions under current and future (2050) scenarios. Focusing on Via della Consolata, Turin, Italy, the study combines remote sensing for UHI detection and numerical simulations for thermal analysis during seasonal extremes. The results show that GWs slightly reduce air temperatures, with a maximum decrease of 1.6 °C in winter (2050), and have cooling effects on mean radiant temperature (up to 2.27 °C) during peak summer solar radiation. GWs also improve outdoor comfort, reducing the Universal Thermal Climate Index by 0.55 °C in the summer of 2050. The energy analysis shows that summer carbon emission intensity is reduced by 31%, despite winter heating demand increasing emissions by 45%. The study highlights the potential of GWs in urban climate adaptation, particularly in dense urban environments with low sky view factors. Seasonal optimization is crucial to balance cooling and heating energy demand. As cities face rising temperatures and heat waves, the integration of GWs offers a sustainable strategy to improve microclimate, reduce carbon emissions, and mitigate the effects of UHI.

Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy / Dehghan Lotfabad, Amir; Morteza Hosseini, Seyed; Dabove, Paolo; Heiranipour, Milad; Sommese, Francesco. - In: BUILDINGS. - ISSN 2075-5309. - STAMPA. - 15:3(2025). [10.3390/buildings15030450]

Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy

Paolo Dabove;Milad Heiranipour;
2025

Abstract

Urban heat islands (UHIs) increase urban warming and reduce outdoor thermal comfort due to changing surface characteristics and climate change. This study investigates the role of green walls (GWs) in mitigating UHI, improving outdoor thermal comfort, and reducing carbon emissions under current and future (2050) scenarios. Focusing on Via della Consolata, Turin, Italy, the study combines remote sensing for UHI detection and numerical simulations for thermal analysis during seasonal extremes. The results show that GWs slightly reduce air temperatures, with a maximum decrease of 1.6 °C in winter (2050), and have cooling effects on mean radiant temperature (up to 2.27 °C) during peak summer solar radiation. GWs also improve outdoor comfort, reducing the Universal Thermal Climate Index by 0.55 °C in the summer of 2050. The energy analysis shows that summer carbon emission intensity is reduced by 31%, despite winter heating demand increasing emissions by 45%. The study highlights the potential of GWs in urban climate adaptation, particularly in dense urban environments with low sky view factors. Seasonal optimization is crucial to balance cooling and heating energy demand. As cities face rising temperatures and heat waves, the integration of GWs offers a sustainable strategy to improve microclimate, reduce carbon emissions, and mitigate the effects of UHI.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo