The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(epsilon-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or copper-doped (SBA3_Cu) silica-based bioactive glasses, through a solvent casting method with chloroform. Neat PCL was used as a control. Samples produced by 3D printing underwent SEM and EDX analyses, and the following were measured: tensile strength and hardness, surface roughness, ion release through ICP-OES, surface free energy, and optical contact angle. Adipose-derived mesenchymal stem cells (ASCs) and human microvascular endothelial cells (HMEC-1) were used to test the biocompatibility of the materials through cell adhesion, spreading, and viability assays. A significant improvement in tensile strength and hardness was observed especially with Cu-doped composites. Both SBA3 and SBA3_Cu added to the PCL favored the early adhesion and the proliferation of HMEC-1 after 3 and 7 days, while ASCs proliferated significantly the most on the SBA-containing composite, at all the time points. Cellular morphology analysis highlighted interesting adaptation patterns to the samples. Further biological characterizations are needed to understand thoroughly how specific bioactive glasses may interact with different cellular types.

Early Biological Response to Poly(ε-caprolactone) PCL—Bioactive Glass Composites Obtained by 3D Printing as Bone Substitutes / Mosca Balma, A.; Pedraza, R.; Roato, I.; Orrico, C.; Meinardi, S.; Bertinetti, S.; Genova, T.; Gautier Di Confiengo, G.; Faga, M. G.; Duraccio, D.; Malucelli, G.; Miola, M.; Vernè, Enrica.; Mussano, F.. - In: POLYMERS. - ISSN 2073-4360. - 17:16(2025), pp. 1-18. [10.3390/polym17162229]

Early Biological Response to Poly(ε-caprolactone) PCL—Bioactive Glass Composites Obtained by 3D Printing as Bone Substitutes

Pedraza R.;Duraccio D.;Malucelli G.;Miola M.;Vernè Enrica.;
2025

Abstract

The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(epsilon-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or copper-doped (SBA3_Cu) silica-based bioactive glasses, through a solvent casting method with chloroform. Neat PCL was used as a control. Samples produced by 3D printing underwent SEM and EDX analyses, and the following were measured: tensile strength and hardness, surface roughness, ion release through ICP-OES, surface free energy, and optical contact angle. Adipose-derived mesenchymal stem cells (ASCs) and human microvascular endothelial cells (HMEC-1) were used to test the biocompatibility of the materials through cell adhesion, spreading, and viability assays. A significant improvement in tensile strength and hardness was observed especially with Cu-doped composites. Both SBA3 and SBA3_Cu added to the PCL favored the early adhesion and the proliferation of HMEC-1 after 3 and 7 days, while ASCs proliferated significantly the most on the SBA-containing composite, at all the time points. Cellular morphology analysis highlighted interesting adaptation patterns to the samples. Further biological characterizations are needed to understand thoroughly how specific bioactive glasses may interact with different cellular types.
2025
File in questo prodotto:
File Dimensione Formato  
polymers-17-02229.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.61 MB
Formato Adobe PDF
3.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003451