The Internet of Things (IoT) is a growing area of interest with an increasing number of applications, including cyber-physical systems (CPS). Emerging threats in the IoT context make software integrity verification a key solution for checking that IoT platforms have not been tampered with so that they behave as expected. Trusted Computing techniques, in particular Remote Attestation (RA), can address this critical need. RA techniques allow a trusted third party (Verifier) to verify the software integrity of a remote platform (Attester). RA techniques rely on the presence of a secure element on the device that acts as a Root of Trust (RoT). Several specifications have been proposed to build RoTs, such as the Trusted Platform Module (TPM), the Device Identifier Composition Engine (DICE), and the Measurement and Attestation RootS (MARS). IoT contexts are often characterized by a highly dynamic scenario where platforms are constantly joining and leaving networks. This condition can be challenging for RA techniques as they need to be aware of the nodes that make up the network. This paper presents the EMBedded Remote Attestation and Verification framEwork (EMBRAVE). It is a TPM-based RA framework designed to provide a dynamic and scalable solution for RA in IoT networks. To support dynamic networks, we designed and developed Join and Leave Protocols, permitting attestation of devices that are not directly under the control of the network owner. This paper discusses the design and open-source implementation of EMBRAVE and presents experimental results demonstrating its effectiveness.

EMBRAVE: EMBedded Remote Attestation and Verification framEwork / Bravi, Enrico; Claudio, Alessio; Lioy, Antonio; Vesco, Andrea. - In: SENSORS. - ISSN 1424-8220. - 25:17(2025). [10.3390/s25175514]

EMBRAVE: EMBedded Remote Attestation and Verification framEwork

Bravi, Enrico;Lioy, Antonio;Vesco, Andrea
2025

Abstract

The Internet of Things (IoT) is a growing area of interest with an increasing number of applications, including cyber-physical systems (CPS). Emerging threats in the IoT context make software integrity verification a key solution for checking that IoT platforms have not been tampered with so that they behave as expected. Trusted Computing techniques, in particular Remote Attestation (RA), can address this critical need. RA techniques allow a trusted third party (Verifier) to verify the software integrity of a remote platform (Attester). RA techniques rely on the presence of a secure element on the device that acts as a Root of Trust (RoT). Several specifications have been proposed to build RoTs, such as the Trusted Platform Module (TPM), the Device Identifier Composition Engine (DICE), and the Measurement and Attestation RootS (MARS). IoT contexts are often characterized by a highly dynamic scenario where platforms are constantly joining and leaving networks. This condition can be challenging for RA techniques as they need to be aware of the nodes that make up the network. This paper presents the EMBedded Remote Attestation and Verification framEwork (EMBRAVE). It is a TPM-based RA framework designed to provide a dynamic and scalable solution for RA in IoT networks. To support dynamic networks, we designed and developed Join and Leave Protocols, permitting attestation of devices that are not directly under the control of the network owner. This paper discusses the design and open-source implementation of EMBRAVE and presents experimental results demonstrating its effectiveness.
2025
File in questo prodotto:
File Dimensione Formato  
sensors-25-05514-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003436