In this paper we investigate finiteness properties of totally disconnected locally compact groups for general commutative rings R, in particular for R=Z and R=Q. We show these properties satisfy many analogous results to the case of discrete groups, and we provide analogues of the famous Bieri's and Brown's criteria for finiteness properties and deduce that both FPn-properties and Fn-properties are quasi-isometric invariant. Moreover, we introduce graph-wreath products in the category of totally disconnected locally compact groups and discuss their finiteness properties.

Finiteness properties of totally disconnected locally compact groups / Castellano, I.; Corob Cook, G.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 543:(2020), pp. 54-97. [10.1016/j.jalgebra.2019.09.017]

Finiteness properties of totally disconnected locally compact groups

Castellano, I.;
2020

Abstract

In this paper we investigate finiteness properties of totally disconnected locally compact groups for general commutative rings R, in particular for R=Z and R=Q. We show these properties satisfy many analogous results to the case of discrete groups, and we provide analogues of the famous Bieri's and Brown's criteria for finiteness properties and deduce that both FPn-properties and Fn-properties are quasi-isometric invariant. Moreover, we introduce graph-wreath products in the category of totally disconnected locally compact groups and discuss their finiteness properties.
File in questo prodotto:
File Dimensione Formato  
Finiteness properties of totally disconnected locally compact groups.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 828.91 kB
Formato Adobe PDF
828.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Finiteness Properties of TDLC groups AAM.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 491.08 kB
Formato Adobe PDF
491.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003341