Riparian vegetation along riverbanks and seagrass along coastlines interact with water currents, significantly altering their flow. To characterise the turbulent fluid motion along the streamwise-edge of a region covered by submerged vegetation (canopy), we perform direct numerical simulations of a half-channel partially obstructed by flexible stems, vertically clamped to the bottom wall. An intense streamwise vortex forms along the canopy edge, drawing high-momentum fluid into the side of the canopy and ejecting low-momentum fluid from the canopy tip, in an upwelling close to the canopy edge. This mechanism has a profound impact on the mean flow and on the exchange of momentum between the fluid and the structure, which we thoroughly characterise. The signature of the canopy-edge vortex is also found in the dynamical response of the stems, assessed for two different values of their flexibility. Varying the flexibility of the stems, we observe how different turbulent structures over the canopy are affected, while the canopy-edge vortex does not exhibit major modifications. Our results provide a better understanding of the flow in fluvial and coastal environments, informing engineering solutions aimed at containing the water flow and protecting banks and coasts from erosion.

Edge effects in the turbulent flow over flexible aquatic vegetation / Foggi Rota, Giulio; Tressoldi, Elisa; Avallone, Francesco; Rosti, Marco Edoardo. - In: JOURNAL OF FLUID MECHANICS. - ISSN 1469-7645. - 1019:(2025). [10.1017/jfm.2025.10629]

Edge effects in the turbulent flow over flexible aquatic vegetation

Tressoldi, Elisa;Avallone, Francesco;
2025

Abstract

Riparian vegetation along riverbanks and seagrass along coastlines interact with water currents, significantly altering their flow. To characterise the turbulent fluid motion along the streamwise-edge of a region covered by submerged vegetation (canopy), we perform direct numerical simulations of a half-channel partially obstructed by flexible stems, vertically clamped to the bottom wall. An intense streamwise vortex forms along the canopy edge, drawing high-momentum fluid into the side of the canopy and ejecting low-momentum fluid from the canopy tip, in an upwelling close to the canopy edge. This mechanism has a profound impact on the mean flow and on the exchange of momentum between the fluid and the structure, which we thoroughly characterise. The signature of the canopy-edge vortex is also found in the dynamical response of the stems, assessed for two different values of their flexibility. Varying the flexibility of the stems, we observe how different turbulent structures over the canopy are affected, while the canopy-edge vortex does not exhibit major modifications. Our results provide a better understanding of the flow in fluvial and coastal environments, informing engineering solutions aimed at containing the water flow and protecting banks and coasts from erosion.
File in questo prodotto:
File Dimensione Formato  
Rota2025.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003238