Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. A key element of the proposed approach is the integration of an infrared pyrometer into vibration monitoring, utilizing accelerometer data to evaluate the state of health of machinery. Unlike traditional fault detection studies that focus on extreme degradation states, this work successfully identifies subtle deviations from optimal, which even expert technicians struggle to detect. Building on a feasibility study conducted with Tecnau SRL, a comprehensive diagnostic system suitable for industrial deployment is developed. Endurance tests pave the way for continuous monitoring under various operating conditions, enabling real-time industrial diagnostic applications. Multi-scale signal analysis highlights the significance of transient and steady-state phase detection, improving the effectiveness of real-time monitoring strategies. Despite the physical similarity of the classified states, simple time-series statistics combined with machine learning algorithms demonstrate high sensitivity to early-stage deviations, confirming the reliability of the approach. Additionally, a systematic analysis to downgrade acquisition system specifications identifies cost-effective sensor configurations, ensuring the feasibility of industrial implementation.

Data-Driven Fault Diagnosis for Rotating Industrial Paper-Cutting Machinery / Viale, Luca; Daga, Alessandro Paolo; Ronchi, Ilaria; Caronia, Salvatore. - In: MACHINES. - ISSN 2075-1702. - 13:8(2025). [10.3390/machines13080688]

Data-Driven Fault Diagnosis for Rotating Industrial Paper-Cutting Machinery

Viale, Luca;Daga, Alessandro Paolo;
2025

Abstract

Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. A key element of the proposed approach is the integration of an infrared pyrometer into vibration monitoring, utilizing accelerometer data to evaluate the state of health of machinery. Unlike traditional fault detection studies that focus on extreme degradation states, this work successfully identifies subtle deviations from optimal, which even expert technicians struggle to detect. Building on a feasibility study conducted with Tecnau SRL, a comprehensive diagnostic system suitable for industrial deployment is developed. Endurance tests pave the way for continuous monitoring under various operating conditions, enabling real-time industrial diagnostic applications. Multi-scale signal analysis highlights the significance of transient and steady-state phase detection, improving the effectiveness of real-time monitoring strategies. Despite the physical similarity of the classified states, simple time-series statistics combined with machine learning algorithms demonstrate high sensitivity to early-stage deviations, confirming the reliability of the approach. Additionally, a systematic analysis to downgrade acquisition system specifications identifies cost-effective sensor configurations, ensuring the feasibility of industrial implementation.
2025
File in questo prodotto:
File Dimensione Formato  
machines-13-00688-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002448