In light of the European Union’s 2050 decarbonization objectives, a fundamental transformation of urban energy systems is required—characterized by decentralization, decarbonization, and digitalization. Within this context, the Renewable Energy Community (REC) model has been identified as a pivotal mechanism for enabling the integration and equitable sharing of locally generated renewable energy, while simultaneously delivering environmental, social, and economic co-benefits. A systemic and place-based approach has therefore been proposed, in which the interactions among buildings, neighborhoods, and communities are holistically considered in the design and governance of urban energy systems. The operationalization of RECs has been shown to rely heavily on the deployment of digital technologies, including Information and Communication Technology (ICT) platforms, smart metering infrastructure, automated control of energy flows, and demand response mechanisms. These technologies serve not only to optimize energy efficiency and flexibility but also to enhance user engagement and energy awareness. A national standard recently published in Italy has formalized this integrated methodology, supporting the coordinated development of smart and low-carbon cities. Concurrently, innovative tools are being developed to facilitate decision-making and strategic planning for RECs at multiple spatial scales. Among them, the Italian geo-portal for RECs and the Public Energy Living Lab (PELL) have been introduced to support the acquisition, organization, and interpretation of territorial and urban energy data. These tools have also enabled the definition and monitoring of context-specific Key Performance Indicators (KPIs), critical for assessing the performance and scalability of REC initiatives. The framework presented herein contributes to the broader objectives of Smart Cities by enabling data-driven, participatory, and resilient energy transitions in urban contexts. Particular emphasis has been placed on harmonizing spatial data infrastructures with energy governance processes, thereby laying the groundwork for replicable and adaptable REC models across diverse territorial configurations.
Renewable energy communities in Italy: A national framework for sustainable cities / Mutani, Guglielmina; Tundo, Antonella; Capezzuto, Pasquale. - In: CHALLENGES IN SUSTAINABILITY. - ISSN 2297-6477. - ELETTRONICO. - 13:3(2025), pp. 398-411. [10.56578/cis130306]
Renewable energy communities in Italy: A national framework for sustainable cities
Guglielmina Mutani;
2025
Abstract
In light of the European Union’s 2050 decarbonization objectives, a fundamental transformation of urban energy systems is required—characterized by decentralization, decarbonization, and digitalization. Within this context, the Renewable Energy Community (REC) model has been identified as a pivotal mechanism for enabling the integration and equitable sharing of locally generated renewable energy, while simultaneously delivering environmental, social, and economic co-benefits. A systemic and place-based approach has therefore been proposed, in which the interactions among buildings, neighborhoods, and communities are holistically considered in the design and governance of urban energy systems. The operationalization of RECs has been shown to rely heavily on the deployment of digital technologies, including Information and Communication Technology (ICT) platforms, smart metering infrastructure, automated control of energy flows, and demand response mechanisms. These technologies serve not only to optimize energy efficiency and flexibility but also to enhance user engagement and energy awareness. A national standard recently published in Italy has formalized this integrated methodology, supporting the coordinated development of smart and low-carbon cities. Concurrently, innovative tools are being developed to facilitate decision-making and strategic planning for RECs at multiple spatial scales. Among them, the Italian geo-portal for RECs and the Public Energy Living Lab (PELL) have been introduced to support the acquisition, organization, and interpretation of territorial and urban energy data. These tools have also enabled the definition and monitoring of context-specific Key Performance Indicators (KPIs), critical for assessing the performance and scalability of REC initiatives. The framework presented herein contributes to the broader objectives of Smart Cities by enabling data-driven, participatory, and resilient energy transitions in urban contexts. Particular emphasis has been placed on harmonizing spatial data infrastructures with energy governance processes, thereby laying the groundwork for replicable and adaptable REC models across diverse territorial configurations.File | Dimensione | Formato | |
---|---|---|---|
CIS_13.03_06.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3002419