The thermophysical behavior of solids (such as oxide compounds, for example) is crucial in applied physics and engineering, with particular regard to heterogeneous catalysis, sensors, high-temperature superconductors, and solid-state batteries. Research in geometric nonlinear theory has provided insights into crystal symmetry and phase compatibility under thermal and elastic stress. High-temperature stress significantly affects phase stability, making an understanding of solid thermodynamics essential for material performance. This study focuses on the mechanical and thermal interactions in solids, analyzing variations in mechanical stress and strain under extreme conditions. We propose a theoretical approach for a thermophysical model that, based on the study of the properties of the global thermal behavior of solids, can describe the thermodynamic effects of elastic deformations. Elastomers are used as a case study to validate the proposed approach.
Engineering Thermodynamic Approach to the Analysis of Elastic Properties: Elastomers as a Case Study / Lucia, U.; Grisolia, G.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - STAMPA. - 15:(2025), pp. 1-14. [10.3390/app15158705]
Engineering Thermodynamic Approach to the Analysis of Elastic Properties: Elastomers as a Case Study
Lucia, U.;Grisolia, G.
2025
Abstract
The thermophysical behavior of solids (such as oxide compounds, for example) is crucial in applied physics and engineering, with particular regard to heterogeneous catalysis, sensors, high-temperature superconductors, and solid-state batteries. Research in geometric nonlinear theory has provided insights into crystal symmetry and phase compatibility under thermal and elastic stress. High-temperature stress significantly affects phase stability, making an understanding of solid thermodynamics essential for material performance. This study focuses on the mechanical and thermal interactions in solids, analyzing variations in mechanical stress and strain under extreme conditions. We propose a theoretical approach for a thermophysical model that, based on the study of the properties of the global thermal behavior of solids, can describe the thermodynamic effects of elastic deformations. Elastomers are used as a case study to validate the proposed approach.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3002366
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo