Marine Cold Air Outbreaks (MCAOs) are critical drivers of high-latitude climates because they regulate the exchange of heat, moisture, and momentum between cold continental or polar air masses and relatively warmer ocean surfaces. In this study, we combined CloudSat–CALIPSO observations (2007–2017) with ERA5 reanalysis data to investigate the microphysical properties and vertical structure of snowfall during MCAOs. By classifying events using a low-level instability parameter, we provide a detailed comparison of the vertical and spatial characteristics of different snowfall regimes, focusing on key cloud properties such as the effective radius, particle concentration, and ice water content. Our analysis identified two distinct snowfall regimes: shallow stratocumulus-dominated snowfall, prevalent during typical MCAOs and characterized by cloud top heights below 3 km and a comparatively lower ice water content (IWC), and deeper snowfall occurring during non-CAO conditions. We demonstrate that, despite their lower instantaneous snowfall rates, CAO-related snowfall events cumulatively contribute significantly to the total ice mass production in the subpolar North Atlantic. Additionally, CAO events are characterized by a greater number of ice particles near the surface, which are also smaller ((Formula presented.) of 59 μm versus 62 μm) than those associated with non-CAO events. These microphysical differences impact cloud optical properties, influencing the surface radiative balance.
Unveiling Cloud Microphysics of Marine Cold Air Outbreaks Through A-Train’s Active Instrumentation / Mroz, Kamil; Dhillon, Ranvir; Battaglia, Alessandro. - In: ATMOSPHERE. - ISSN 2073-4433. - 16:5(2025). [10.3390/atmos16050518]
Unveiling Cloud Microphysics of Marine Cold Air Outbreaks Through A-Train’s Active Instrumentation
Battaglia, Alessandro
2025
Abstract
Marine Cold Air Outbreaks (MCAOs) are critical drivers of high-latitude climates because they regulate the exchange of heat, moisture, and momentum between cold continental or polar air masses and relatively warmer ocean surfaces. In this study, we combined CloudSat–CALIPSO observations (2007–2017) with ERA5 reanalysis data to investigate the microphysical properties and vertical structure of snowfall during MCAOs. By classifying events using a low-level instability parameter, we provide a detailed comparison of the vertical and spatial characteristics of different snowfall regimes, focusing on key cloud properties such as the effective radius, particle concentration, and ice water content. Our analysis identified two distinct snowfall regimes: shallow stratocumulus-dominated snowfall, prevalent during typical MCAOs and characterized by cloud top heights below 3 km and a comparatively lower ice water content (IWC), and deeper snowfall occurring during non-CAO conditions. We demonstrate that, despite their lower instantaneous snowfall rates, CAO-related snowfall events cumulatively contribute significantly to the total ice mass production in the subpolar North Atlantic. Additionally, CAO events are characterized by a greater number of ice particles near the surface, which are also smaller ((Formula presented.) of 59 μm versus 62 μm) than those associated with non-CAO events. These microphysical differences impact cloud optical properties, influencing the surface radiative balance.| File | Dimensione | Formato | |
|---|---|---|---|
|
Morz_etal2025atmosphere-16-00518-v2.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3002186
