The objective of the present work is to introduce a methodology capable of modelling welded components for structural stress analysis. The modelling technique was based on the recommendations of the International Institute of Welding; however, some geometrical features of the weld fillet were used as design parameters in an optimization problem. Namely, the weld leg length and thickness of the shell elements representing the weld fillet were optimized in such a way that the first natural frequencies were not changed significantly when compared to a reference result. Sequential linear programming was performed for T-joint structures corresponding to two different structural details: with and without full penetration weld fillets. Both structural details were tested in scenarios of various plate thicknesses and depths. Once the optimal parameters were found, a modelling procedure was proposed for T-shaped components. Furthermore, the proposed modelling technique was extended for overlapped welded joints. The results obtained were compared to well-established methodologies presented in standards and in the literature. The comparisons included results for natural frequencies, total mass and structural stress. By these comparisons, it was observed that some established practices produce significant errors in the overall stiffness and inertia. The methodology proposed herein does not share this issue and can be easily extended to other types of structure.
Parametric representation of weld fillets using shell finite elements—a proposal based on minimum stiffness and inertia errors / Echer, L.; Marczak, R. J.. - In: ENGINEERING OPTIMIZATION. - ISSN 0305-215X. - ELETTRONICO. - 50:2(2018), pp. 183-204. [10.1080/0305215x.2017.1307356]
Parametric representation of weld fillets using shell finite elements—a proposal based on minimum stiffness and inertia errors
Echer, L.;
2018
Abstract
The objective of the present work is to introduce a methodology capable of modelling welded components for structural stress analysis. The modelling technique was based on the recommendations of the International Institute of Welding; however, some geometrical features of the weld fillet were used as design parameters in an optimization problem. Namely, the weld leg length and thickness of the shell elements representing the weld fillet were optimized in such a way that the first natural frequencies were not changed significantly when compared to a reference result. Sequential linear programming was performed for T-joint structures corresponding to two different structural details: with and without full penetration weld fillets. Both structural details were tested in scenarios of various plate thicknesses and depths. Once the optimal parameters were found, a modelling procedure was proposed for T-shaped components. Furthermore, the proposed modelling technique was extended for overlapped welded joints. The results obtained were compared to well-established methodologies presented in standards and in the literature. The comparisons included results for natural frequencies, total mass and structural stress. By these comparisons, it was observed that some established practices produce significant errors in the overall stiffness and inertia. The methodology proposed herein does not share this issue and can be easily extended to other types of structure.File | Dimensione | Formato | |
---|---|---|---|
2017_ECHER_L_et_al-Parametric_representation_of_weld_fillets_using_shell_FE_published.pdf
accesso riservato
Descrizione: Post-print published manuscript
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PREPRINT_2017_ECHER_L_et_al-Parametric_representation_of_weld_fillets_using_shell_FE_published.pdf
accesso aperto
Descrizione: Postprint / Author's Accepted Manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3002174