The transition to net-zero emissions by 2050 necessitates the development of sustainable and efficient energy storage systems to complement the rise in renewable energy generation. Lithium-ion batteries (LiBs) are pivotal in this energy transformation, yet challenges remain in developing sustainable, high-performance materials. Manganese oxides (MnOₓ) are promising candidates for LiBs anodes due to their abundance and high theoretical capacity. However, the commercial synthesis of MnOₓ materials is resource-intensive, and the mining processes generate large amounts of environmentally hazardous tailings. In this study, we propose a novel method to recover manganese from mining tailings in the Brazilian Amazon and synthesize δ-MnO₂ as a high-capacity conversion anode material for LIBs. Using a green recovery method involving KOH and H₂O₂, we extracted potassium manganate (K₂MnO₄) from the tailings with a recovery efficiency of 90.3 %,and synthesized δ-MnO₂. The prepared material showed promising electrochemical properties, demonstrating its potential as a sustainable alternative to commercially available manganese oxides. This process not only offers a way to mitigate the environmental risks posed by manganese mining tailings but also provides an economically viable solution for producing high-performance battery materials. The developed methodology can be applied to other manganese-bearing residues and low-grade ores, contributing to the growing demand for battery-grade manganese in a sustainable and circular manner.
A sustainable δ-MnO₂ derived from Amazon rainforest Mn-ore tailings for applications in lithium-ion batteries / Angeletti, L.; Agostini, M.; Figueira, B. A. Miranda; Latini, A.; Paris, E. C.; De Giorgio, F.; Schultz, T.; Di Conzo, C.; Mura, F.; Rossi, M.; Yadav, N. G.; Adelhelm, P.; Mazzei, F.; Brutti, S.; Quaranta, S.. - In: SUSTAINABLE MATERIALS AND TECHNOLOGIES. - ISSN 2214-9937. - 44:(2025). [10.1016/j.susmat.2025.e01347]
A sustainable δ-MnO₂ derived from Amazon rainforest Mn-ore tailings for applications in lithium-ion batteries
Agostini, M.;De Giorgio, F.;Di Conzo, C.;Mura, F.;Mazzei, F.;Quaranta, S.
2025
Abstract
The transition to net-zero emissions by 2050 necessitates the development of sustainable and efficient energy storage systems to complement the rise in renewable energy generation. Lithium-ion batteries (LiBs) are pivotal in this energy transformation, yet challenges remain in developing sustainable, high-performance materials. Manganese oxides (MnOₓ) are promising candidates for LiBs anodes due to their abundance and high theoretical capacity. However, the commercial synthesis of MnOₓ materials is resource-intensive, and the mining processes generate large amounts of environmentally hazardous tailings. In this study, we propose a novel method to recover manganese from mining tailings in the Brazilian Amazon and synthesize δ-MnO₂ as a high-capacity conversion anode material for LIBs. Using a green recovery method involving KOH and H₂O₂, we extracted potassium manganate (K₂MnO₄) from the tailings with a recovery efficiency of 90.3 %,and synthesized δ-MnO₂. The prepared material showed promising electrochemical properties, demonstrating its potential as a sustainable alternative to commercially available manganese oxides. This process not only offers a way to mitigate the environmental risks posed by manganese mining tailings but also provides an economically viable solution for producing high-performance battery materials. The developed methodology can be applied to other manganese-bearing residues and low-grade ores, contributing to the growing demand for battery-grade manganese in a sustainable and circular manner.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2214993725001150-main.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3001821