Among N-rich heterocycle backbone compounds, the triazoles building block received a lot of interest in several different academic and industrial studies and applications. This article outlines the process of synthesizing three different 1,2,4-triazole-based systems, commencing with 1,3-diaminoguanidine hydrochloride monohydrate as the starting material. The five novel crystal structures, Triaz1, Triaz2, Triaz3, Triaz4, and Triaz5, were characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Hirshfeld surface analysis was employed to explore the intermolecular interactions that are responsible for quantitative crystal packing. The synthesized compounds, with their elevated nitrogen content, serve as potential components for High-Energy-Density material science applications.
Synthesis and Crystallization of N-rich Triazole Compounds / Parisi, Emmanuele; Centore, Roberto. - In: CRYSTALS. - ISSN 2073-4352. - 13:12(2023). [10.3390/cryst13121651]
Synthesis and Crystallization of N-rich Triazole Compounds
Emmanuele Parisi;
2023
Abstract
Among N-rich heterocycle backbone compounds, the triazoles building block received a lot of interest in several different academic and industrial studies and applications. This article outlines the process of synthesizing three different 1,2,4-triazole-based systems, commencing with 1,3-diaminoguanidine hydrochloride monohydrate as the starting material. The five novel crystal structures, Triaz1, Triaz2, Triaz3, Triaz4, and Triaz5, were characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Hirshfeld surface analysis was employed to explore the intermolecular interactions that are responsible for quantitative crystal packing. The synthesized compounds, with their elevated nitrogen content, serve as potential components for High-Energy-Density material science applications.File | Dimensione | Formato | |
---|---|---|---|
crystals-13-01651.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
6.79 MB
Formato
Adobe PDF
|
6.79 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3001035