Automatic passenger counting (APC) systems are an important asset for public transport operators, allowing them to optimise networks by monitoring lines’ utilisation. However, the cost of these systems is high and the development of alternative devices, cheaper than the most widely used optical systems, seems promising. This paper aims at understanding the influence of local factors on the accuracy of aWi-Fi APC system by analysing error patterns in a real-world scenario. The APC system was installed on a bus operating regularly within the public transport network and, in the meantime, ground truth data were collected through manual counting. The collected data were then analysed to calculate accuracy and, finally, multilevel modelling was used to identify error patterns due to local factors. This study challenges traditional assumptions, revealing that factors like high pedestrian traffic or intense vehicular movement around the bus have minimal impact on accuracy, if effective received signal strength indicator filters are used. Instead, the number of passengers within the bus affects Wi-Fi systems significantly, especially when the bus is carrying more than 10 passengers, which leads to undercounting due to signal obstruction. This research lays the foundation for strategic error correction to improve accuracy in real-world scenarios.
Wi-Fi Sensing and Passenger Counting: A Statistical Analysis of Local Factors and Error Patterns / Pronello, Cristina; Anbarasan, Deepan; Boggio Marzet, Alessandra. - In: INFORMATION. - ISSN 2078-2489. - ELETTRONICO. - 16:6(2025). [10.3390/info16060459]
Wi-Fi Sensing and Passenger Counting: A Statistical Analysis of Local Factors and Error Patterns
Cristina Pronello;Deepan Anbarasan;Alessandra Boggio Marzet
2025
Abstract
Automatic passenger counting (APC) systems are an important asset for public transport operators, allowing them to optimise networks by monitoring lines’ utilisation. However, the cost of these systems is high and the development of alternative devices, cheaper than the most widely used optical systems, seems promising. This paper aims at understanding the influence of local factors on the accuracy of aWi-Fi APC system by analysing error patterns in a real-world scenario. The APC system was installed on a bus operating regularly within the public transport network and, in the meantime, ground truth data were collected through manual counting. The collected data were then analysed to calculate accuracy and, finally, multilevel modelling was used to identify error patterns due to local factors. This study challenges traditional assumptions, revealing that factors like high pedestrian traffic or intense vehicular movement around the bus have minimal impact on accuracy, if effective received signal strength indicator filters are used. Instead, the number of passengers within the bus affects Wi-Fi systems significantly, especially when the bus is carrying more than 10 passengers, which leads to undercounting due to signal obstruction. This research lays the foundation for strategic error correction to improve accuracy in real-world scenarios.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3000780
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo