The influence of aging and thermal shock processes on polymer coating reinforced with various rubber fillers on an aluminum substrate was investigated. The coatings were made from a polyurethane matrix and two different reinforcement materials: EPDM and SBR rubber waste fillers. The samples were subjected to 100 thermal shock cycles. Each cycle lasted 1 h, comprising 30 min at 100 °C followed by 30 min at 40 °C. The aging tests were conducted in a SUNTEST XLS+ aging chamber from Atlas Material Testing Technology GmbH, in accordance with the applicable ISO 4892-1:2016 standard. Thermal shocks increased the impact resistance of coatings with EPDM and SBR fillers. Neither UV aging nor thermal shocks affected the impact or abrasion resistance of unfilled polyurethane coatings. FTIR analysis revealed that UV exposure significantly accelerates chemical degradation of PUR, though fillers—especially EPDM—enhanced stability by mitigating this effect. Thermal shocks induced surface-level changes, including the formation of oxygenated groups and the rearrangement of hydrogen bonds. Rubber waste fillers influenced surface and thermal properties, with EPDM maintaining better hydrophobicity and oxidation resistance, while SBR-filled coatings demonstrated higher thermal stability but greater flexibility and susceptibility to degradation after aging.
The influence of the addition of rubber waste on the properties of polyurethane coatings subjected to aging processes / Mayer-Trzaskowska, Paulina; Ferraris, Monica; Perero, Sergio; Robakowska, Mariola. - In: COATINGS. - ISSN 2079-6412. - ELETTRONICO. - 15:667(2025). [10.3390/coatings15060677]
The influence of the addition of rubber waste on the properties of polyurethane coatings subjected to aging processes
Monica Ferraris;Sergio Perero;
2025
Abstract
The influence of aging and thermal shock processes on polymer coating reinforced with various rubber fillers on an aluminum substrate was investigated. The coatings were made from a polyurethane matrix and two different reinforcement materials: EPDM and SBR rubber waste fillers. The samples were subjected to 100 thermal shock cycles. Each cycle lasted 1 h, comprising 30 min at 100 °C followed by 30 min at 40 °C. The aging tests were conducted in a SUNTEST XLS+ aging chamber from Atlas Material Testing Technology GmbH, in accordance with the applicable ISO 4892-1:2016 standard. Thermal shocks increased the impact resistance of coatings with EPDM and SBR fillers. Neither UV aging nor thermal shocks affected the impact or abrasion resistance of unfilled polyurethane coatings. FTIR analysis revealed that UV exposure significantly accelerates chemical degradation of PUR, though fillers—especially EPDM—enhanced stability by mitigating this effect. Thermal shocks induced surface-level changes, including the formation of oxygenated groups and the rearrangement of hydrogen bonds. Rubber waste fillers influenced surface and thermal properties, with EPDM maintaining better hydrophobicity and oxidation resistance, while SBR-filled coatings demonstrated higher thermal stability but greater flexibility and susceptibility to degradation after aging.File | Dimensione | Formato | |
---|---|---|---|
coatings-15-00677.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3000660