ustainability is increasingly prioritized in infrastructure design; however, its integration into the conceptual design phase remains limited, particularly for pedestrian bridges, where structural performance plays a critical role. While existing frameworks address environmental and economic impacts in later stages, they typically fail to incorporate structural performance and sustainability holistically at the outset. To address this gap, this study introduces a quantitative decision-support framework tailored for the conceptual design of footbridges. The methodology integrates five key indicators, Global Warming Potential (GI), Total Cost (TC), Robustness (RO), Inspection (IN), and Maintenance (MA), using a Multi-Criteria Decision Making (MCDM) approach, specifically the Weighted Sum Model (WSM), supported by Pearson correlation analysis, to identify trade-offs and interdependencies among metrics. The framework is tested on two real-world case studies involving steel pedestrian bridges in different urban contexts. The results reveal a strong correlation between inspection and maintenance, suggesting that designs optimized for inspection accessibility can significantly reduce life cycle maintenance efforts and costs. Robustness appears to be largely independent from environmental impact, indicating the potential to improve structural resilience without compromising sustainability. Furthermore, cost–sustainability relationships are shown to be highly context-dependent. The practical implications of these findings are substantial: by offering a structured, data-driven tool for early-stage evaluation, the framework enables engineers, urban planners, and policymakers to make informed design choices that align with long-term sustainability goals. It offers a methodological basis for comparing design options based on quantifiable sustainability and structural metrics, contributing to evidence-based decision making in line with evolving standards for sustainable infrastructure.
Integrating Sustainability Indicators in Conceptual Design of Footbridges: A Decision-Support Framework for Environmental, Economic, and Structural Performance / Gozzi, Valeria; Guante Henriquez, Leidy. - In: SUSTAINABILITY. - ISSN 2071-1050. - 17:10(2025). [10.3390/su17104562]
Integrating Sustainability Indicators in Conceptual Design of Footbridges: A Decision-Support Framework for Environmental, Economic, and Structural Performance
Valeria Gozzi;
2025
Abstract
ustainability is increasingly prioritized in infrastructure design; however, its integration into the conceptual design phase remains limited, particularly for pedestrian bridges, where structural performance plays a critical role. While existing frameworks address environmental and economic impacts in later stages, they typically fail to incorporate structural performance and sustainability holistically at the outset. To address this gap, this study introduces a quantitative decision-support framework tailored for the conceptual design of footbridges. The methodology integrates five key indicators, Global Warming Potential (GI), Total Cost (TC), Robustness (RO), Inspection (IN), and Maintenance (MA), using a Multi-Criteria Decision Making (MCDM) approach, specifically the Weighted Sum Model (WSM), supported by Pearson correlation analysis, to identify trade-offs and interdependencies among metrics. The framework is tested on two real-world case studies involving steel pedestrian bridges in different urban contexts. The results reveal a strong correlation between inspection and maintenance, suggesting that designs optimized for inspection accessibility can significantly reduce life cycle maintenance efforts and costs. Robustness appears to be largely independent from environmental impact, indicating the potential to improve structural resilience without compromising sustainability. Furthermore, cost–sustainability relationships are shown to be highly context-dependent. The practical implications of these findings are substantial: by offering a structured, data-driven tool for early-stage evaluation, the framework enables engineers, urban planners, and policymakers to make informed design choices that align with long-term sustainability goals. It offers a methodological basis for comparing design options based on quantifiable sustainability and structural metrics, contributing to evidence-based decision making in line with evolving standards for sustainable infrastructure.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3000239
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo