The wetting behaviour of (HfTaZrNbTi)B₂ high entropy boride (HEB) and (HfTaZrNbTi)C high-entropy carbide (HEC) with molten Cu and AgCuTi alloy was investigated via the sessile drop method under an Ar/H2 atmosphere. Pure Cu exhibited non-reactive wetting with contact angles ∼ 120° on HEB and ∼ 126° on HEC. In contrast, AgCuTi alloy showed strong reactive wetting (contact angle ≤ 17°), primarily driven by reactive Ti. The reaction layer was notably thicker for the HEC/AgCuTi system. Due to the better wetting behaviour and high-temperature interactions with the ceramic substrates, AgCuTi alloy was employed as a filler to braze HEB and HEC using pressure-less Field Assisted Sintering Technique (FAST). The resulting joints demonstrated high apparent shear strength of 176 ± 39 MPa for HEC and 116 ± 38 MPa for HEB, exceeding the strength of the base materials in both cases.

Wetting and brazing of (HfTaZrNbTi)B2 and (HfTaZrNbTi)C High-Entropy Ceramics by AgCuTi filler / Hosseini, Naser; Valenza, Fabrizio; Chlup, Zdeněk; Gambaro, Sofia; Malinverni, Carla; Casalegno, Valentina; Kovalčíková, Alexandra; Tatarková, Monika; Dlouhý, Ivo; Tatarko, Peter. - In: OPEN CERAMICS. - ISSN 2666-5395. - 22:(2025). [10.1016/j.oceram.2025.100792]

Wetting and brazing of (HfTaZrNbTi)B2 and (HfTaZrNbTi)C High-Entropy Ceramics by AgCuTi filler

Valenza, Fabrizio;Malinverni, Carla;Casalegno, Valentina;
2025

Abstract

The wetting behaviour of (HfTaZrNbTi)B₂ high entropy boride (HEB) and (HfTaZrNbTi)C high-entropy carbide (HEC) with molten Cu and AgCuTi alloy was investigated via the sessile drop method under an Ar/H2 atmosphere. Pure Cu exhibited non-reactive wetting with contact angles ∼ 120° on HEB and ∼ 126° on HEC. In contrast, AgCuTi alloy showed strong reactive wetting (contact angle ≤ 17°), primarily driven by reactive Ti. The reaction layer was notably thicker for the HEC/AgCuTi system. Due to the better wetting behaviour and high-temperature interactions with the ceramic substrates, AgCuTi alloy was employed as a filler to braze HEB and HEC using pressure-less Field Assisted Sintering Technique (FAST). The resulting joints demonstrated high apparent shear strength of 176 ± 39 MPa for HEC and 116 ± 38 MPa for HEB, exceeding the strength of the base materials in both cases.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2666539525000598-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 9.49 MB
Formato Adobe PDF
9.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2999949