Proteins are involved in nearly all cellular functions, encompassing roles in transport, signaling, enzymatic activity, and more. Their functionalities crucially depend on their complex three-dimensional arrangement. For this reason, being able to predict their structure from the amino acid sequence has been and still is a phenomenal computational challenge that the introduction of AlphaFold solved with unprecedented accuracy. However, the inherent complexity of AlphaFold's architectures makes it challenging to understand the rules that ultimately shape the protein's predicted structure. This study investigates a single-layer unsupervised model based on the attention mechanism. More precisely, we explore a Direct Coupling Analysis (DCA) method that mimics the attention mechanism of several popular Transformer architectures, such as AlphaFold itself. The model's parameters, notably fewer than those in standard DCA-based algorithms, can be directly used for extracting structural determinants such as the contact map of the protein family under study. Additionally, the functional form of the energy function of the model enables us to deploy a multi-family learning strategy, allowing us to effectively integrate information across multiple protein families, whereas standard DCA algorithms are typically limited to single protein families. Finally, we implemented a generative version of the model using an autoregressive architecture, capable of efficiently generating new proteins in silico.

Direct coupling analysis and the attention mechanism / Caredda, F.; Pagnani, A.. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 26:1(2025). [10.1186/s12859-025-06062-y]

Direct coupling analysis and the attention mechanism

Caredda F.;Pagnani A.
2025

Abstract

Proteins are involved in nearly all cellular functions, encompassing roles in transport, signaling, enzymatic activity, and more. Their functionalities crucially depend on their complex three-dimensional arrangement. For this reason, being able to predict their structure from the amino acid sequence has been and still is a phenomenal computational challenge that the introduction of AlphaFold solved with unprecedented accuracy. However, the inherent complexity of AlphaFold's architectures makes it challenging to understand the rules that ultimately shape the protein's predicted structure. This study investigates a single-layer unsupervised model based on the attention mechanism. More precisely, we explore a Direct Coupling Analysis (DCA) method that mimics the attention mechanism of several popular Transformer architectures, such as AlphaFold itself. The model's parameters, notably fewer than those in standard DCA-based algorithms, can be directly used for extracting structural determinants such as the contact map of the protein family under study. Additionally, the functional form of the energy function of the model enables us to deploy a multi-family learning strategy, allowing us to effectively integrate information across multiple protein families, whereas standard DCA algorithms are typically limited to single protein families. Finally, we implemented a generative version of the model using an autoregressive architecture, capable of efficiently generating new proteins in silico.
File in questo prodotto:
File Dimensione Formato  
s12859-025-06062-y.pdf

accesso aperto

Descrizione: Articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2999888