The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between cancerous and healthy tissues due to their electrical properties. Ensuring the safety of this technology is vital for its potential clinical application. To estimate the temperature increase in breast tissues from a microwave imaging scanner, cases of healthy, benign, and malignant breast tissues were analyzed using three digital models and adding two healthy breast models with varying densities. Virtual experiments were conducted using the Sim4Life software (version 7.2) with a system consisting of a horn antenna in transmission and a Vivaldi antenna in reception. Temperature increases were estimated based on the Specific Absorption Rate distributions computed for different configurations and frequencies. The highest temperature increase obtained in this analysis is lower than 60 μK in fibroglandular tissue or skin, depending on the frequency and breast density. The presence of a receiving antenna acting as a scatterer modifies the temperature increase, which is almost negligible. Microwave examination can be performed without harmful thermal effects due to electromagnetic field exposure.
Safety Assessment of Microwave Breast Imaging: Heating Analysis on Digital Breast Phantoms / Ronca, Alessandra; Zilberti, Luca; Bottauscio, Oriano; Tiberi, Gianluigi; Arduino, Alessandro. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 15:8(2025). [10.3390/app15084262]
Safety Assessment of Microwave Breast Imaging: Heating Analysis on Digital Breast Phantoms
Alessandra Ronca;Luca Zilberti;Gianluigi Tiberi;
2025
Abstract
The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between cancerous and healthy tissues due to their electrical properties. Ensuring the safety of this technology is vital for its potential clinical application. To estimate the temperature increase in breast tissues from a microwave imaging scanner, cases of healthy, benign, and malignant breast tissues were analyzed using three digital models and adding two healthy breast models with varying densities. Virtual experiments were conducted using the Sim4Life software (version 7.2) with a system consisting of a horn antenna in transmission and a Vivaldi antenna in reception. Temperature increases were estimated based on the Specific Absorption Rate distributions computed for different configurations and frequencies. The highest temperature increase obtained in this analysis is lower than 60 μK in fibroglandular tissue or skin, depending on the frequency and breast density. The presence of a receiving antenna acting as a scatterer modifies the temperature increase, which is almost negligible. Microwave examination can be performed without harmful thermal effects due to electromagnetic field exposure.File | Dimensione | Formato | |
---|---|---|---|
applsci-15-04262-v2.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
8.39 MB
Formato
Adobe PDF
|
8.39 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999847