Beavers are semi-aquatic mammals that significantly impact on freshwater ecosystems, creating benefits and challenges, particularly in areas with close human interaction. Managing human-beaver interactions is a multifaceted issue due to the many variables involved, but the complexity of these interactions can be analysed effectively using system dynamics models. These models are used in many contexts, including wildlife management, to simulate a variety of management policies and assess their effects. The present study addressed gaps in the literature by developing a system dynamics model that examined both the benefits and conflicts that arise from human-beaver interactions. The model, implemented using Vensim PLE software, synthesised qualitative and quantitative data to simulate four simulation scenarios: ecological, social, economic, and policy making. The study examined the dynamics of beaver populations, ecosystem service provision, social perceptions, and management strategies in a case study of the Ivrea lakes area in the Piedmont region (Italy). Model predictions highlights that beaver populations stabilized logistically, influencing ecosystem services and residual capital, while social acceptance stongly reduced management costs and social pressure. Optimal budget allocation and combined strategies emerged as key to sustainable management and conflict mitigation. Overall, predictions suggest that an integrated approach that prioritises prevention and actively engages local communities can improve both ecological outcomes and social acceptance of beavers. The model is a useful decision and discussion tool for assessing management strategies and facilitating stakeholder involvement. Future studies should expand on these results by exploring additional beaver-related conflicts and benefits in diverse contexts.
Modelling system dynamics as a socio-ecological perspective to support human-beaver interactions / Treves, A.; Zenezini, G.; Comino, E.. - In: ECOLOGICAL MODELLING. - ISSN 0304-3800. - 503:(2025). [10.1016/j.ecolmodel.2025.111057]
Modelling system dynamics as a socio-ecological perspective to support human-beaver interactions
Treves A.;Zenezini G.;Comino E.
2025
Abstract
Beavers are semi-aquatic mammals that significantly impact on freshwater ecosystems, creating benefits and challenges, particularly in areas with close human interaction. Managing human-beaver interactions is a multifaceted issue due to the many variables involved, but the complexity of these interactions can be analysed effectively using system dynamics models. These models are used in many contexts, including wildlife management, to simulate a variety of management policies and assess their effects. The present study addressed gaps in the literature by developing a system dynamics model that examined both the benefits and conflicts that arise from human-beaver interactions. The model, implemented using Vensim PLE software, synthesised qualitative and quantitative data to simulate four simulation scenarios: ecological, social, economic, and policy making. The study examined the dynamics of beaver populations, ecosystem service provision, social perceptions, and management strategies in a case study of the Ivrea lakes area in the Piedmont region (Italy). Model predictions highlights that beaver populations stabilized logistically, influencing ecosystem services and residual capital, while social acceptance stongly reduced management costs and social pressure. Optimal budget allocation and combined strategies emerged as key to sustainable management and conflict mitigation. Overall, predictions suggest that an integrated approach that prioritises prevention and actively engages local communities can improve both ecological outcomes and social acceptance of beavers. The model is a useful decision and discussion tool for assessing management strategies and facilitating stakeholder involvement. Future studies should expand on these results by exploring additional beaver-related conflicts and benefits in diverse contexts.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999785
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo