Mediterranean water-stressed areas face significant challenges from higher temperatures and increasingly severe droughts. We assess the effect of climate change on rainfed barley production in the aridity-prone province of Almería, Spain, using the FAO AquaCrop model. We focus on rainfed barley growth by the mid-century (2041–2070) and end-century (2071–2100) time periods, using three Shared Socio-economic Pathway (SSP)-based scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. Using the paired t-test, Spearman and Pearson correlation coefficient, Root Mean Squared Error, and relative Root Mean Squared Error, we verified AquaCrop’s ability to capture local multi-year trends (9 or more years) using standard barley crop parameters, without local recalibration. Starting with a reference Initial Soil Water Content (ISWC), different soil water contents within barley rooting depth were modelled to account for decreases in soil water availability. We then evaluated the efficiency of different climate adaptation strategies: irrigation, mulching, and changing sowing dates. We show average yield changes of +14% to −44.8% (mid-century) and +12% to −55.1% (end-century), with ISWC being the main factor determining yields. Irrigation increases yields by 21.1%, utilizing just 3% of Almería’s superficial water resources. Mulches improve irrigated yield performances by 6.9% while reducing irrigation needs by 40%. Changing sowing dates does not consistently improve yields. We demonstrate that regardless of the scenario used, climate adaptation of field barley production in Almería should prioritize limiting soil water loss by combining irrigation with mulching. This would enable farmers in Almería’s northern communities to maintain their livelihoods, reducing the province’s reliance on horticulture while continuing to contribute to food security goals.
Impacts of Climate Change and Adaptation Strategies for Rainfed Barley Production in the Almería Province, Spain / Saretto, Francesco; Roy, Bishwajit; Encarnação Coelho, Ricardo; Reder, Alfredo; Fedele, Giusy; Oakes, Robert; Brandimarte, Luigia; Capela Lourenço, Tiago. - In: ATMOSPHERE. - ISSN 2073-4433. - 15:5(2024). [10.3390/atmos15050606]
Impacts of Climate Change and Adaptation Strategies for Rainfed Barley Production in the Almería Province, Spain
Saretto, Francesco;
2024
Abstract
Mediterranean water-stressed areas face significant challenges from higher temperatures and increasingly severe droughts. We assess the effect of climate change on rainfed barley production in the aridity-prone province of Almería, Spain, using the FAO AquaCrop model. We focus on rainfed barley growth by the mid-century (2041–2070) and end-century (2071–2100) time periods, using three Shared Socio-economic Pathway (SSP)-based scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. Using the paired t-test, Spearman and Pearson correlation coefficient, Root Mean Squared Error, and relative Root Mean Squared Error, we verified AquaCrop’s ability to capture local multi-year trends (9 or more years) using standard barley crop parameters, without local recalibration. Starting with a reference Initial Soil Water Content (ISWC), different soil water contents within barley rooting depth were modelled to account for decreases in soil water availability. We then evaluated the efficiency of different climate adaptation strategies: irrigation, mulching, and changing sowing dates. We show average yield changes of +14% to −44.8% (mid-century) and +12% to −55.1% (end-century), with ISWC being the main factor determining yields. Irrigation increases yields by 21.1%, utilizing just 3% of Almería’s superficial water resources. Mulches improve irrigated yield performances by 6.9% while reducing irrigation needs by 40%. Changing sowing dates does not consistently improve yields. We demonstrate that regardless of the scenario used, climate adaptation of field barley production in Almería should prioritize limiting soil water loss by combining irrigation with mulching. This would enable farmers in Almería’s northern communities to maintain their livelihoods, reducing the province’s reliance on horticulture while continuing to contribute to food security goals.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											atmosphere-15-00606.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Articolo
										 
									
									
									
										
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										6.44 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								6.44 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999781
			
		
	
	
	
			      	