Modern powertrain configurations for electric vehicles introduce the possibility to actuate the wheel directly by means of in-wheel motors. These machines enable stiffer and more efficient traction, with the possibility of introducing pitch motion control due to the intrinsic coupling between longitudinal, vertical, and pitch dynamics. This paper proposes a pitch rate attenuation control exploiting a Lyapunov function that attempts to cancel the pitch rate dynamics from the model. Unlike previous works, this pitch control is performed exclusively with the traction machine; it does not rely on controllable suspension systems. The controller formulation guarantees global stability of the vehicle. Furthermore, it considers the nonlinearity of the plant introduced by the dependency on the pitch angle. To facilitate the feedback of the road profile needed by the Lyapunov controller, two Kalman filters are included in the control law. This work implements the described strategy on a half car model. Simulations examine different speed and road conditions. It is demonstrated that the control strategy can blend longitudinal and pitch rate attenuation torque commands using a rear in-wheel motor, attaining a reduction of up to 41% for chassis pitch rate and 36% for pitch acceleration.

Lyapunov-Based Pitch Control for Electric Vehicles Using In-Wheel Motors / Valdivieso-Soto, Andrew; Galluzzi, Renato; Tramacere, Eugenio; Cespi, Riccardo; Castellanos Molina, Luis M.. - In: VEHICLES. - ISSN 2624-8921. - 7:2(2025). [10.3390/vehicles7020037]

Lyapunov-Based Pitch Control for Electric Vehicles Using In-Wheel Motors

Renato Galluzzi;Eugenio Tramacere;Luis M. Castellanos Molina
2025

Abstract

Modern powertrain configurations for electric vehicles introduce the possibility to actuate the wheel directly by means of in-wheel motors. These machines enable stiffer and more efficient traction, with the possibility of introducing pitch motion control due to the intrinsic coupling between longitudinal, vertical, and pitch dynamics. This paper proposes a pitch rate attenuation control exploiting a Lyapunov function that attempts to cancel the pitch rate dynamics from the model. Unlike previous works, this pitch control is performed exclusively with the traction machine; it does not rely on controllable suspension systems. The controller formulation guarantees global stability of the vehicle. Furthermore, it considers the nonlinearity of the plant introduced by the dependency on the pitch angle. To facilitate the feedback of the road profile needed by the Lyapunov controller, two Kalman filters are included in the control law. This work implements the described strategy on a half car model. Simulations examine different speed and road conditions. It is demonstrated that the control strategy can blend longitudinal and pitch rate attenuation torque commands using a rear in-wheel motor, attaining a reduction of up to 41% for chassis pitch rate and 36% for pitch acceleration.
2025
File in questo prodotto:
File Dimensione Formato  
vehicles-07-00037.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2999544