In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated. Here, an original patient-specific multiscale agent-based modelling framework was developed to investigate the interplay between drug release, plaque composition and intervention-induced inflammation on in-stent restenosis following drug-eluting stent implantation. The framework integrated a finite element simulation of stent expansion, with a drug transport simulation and an agent-based model of cellular dynamics. A patient-specific coronary cross-section with heterogeneous diseased tissue was considered and rigorously analyzed through a variety of scenarios, including different plaque compositions and different inflammatory responses. The analysis revealed three significant findings: (i) calcifications substantially impeded drug transport, resulting in drug-depleted regions and reduced stent efficacy; (ii) by impacting drug transport, variations in plaque composition influenced arterial wall response, with the fully-calcific scenario showing the greatest lumen area reduction; (iii) the impact of different drug receptor saturation conditions (obtained with different plaque compositions) was particularly evident under conditions of persistent inflammatory state. This study represents a significant advancement in multiscale modelling of in-stent restenosis following drug-eluting stent implantation. The results obtained provided deeper insights into the complex interactions among patient-specific plaque composition, inflammation and drug retention, suggesting a patient-specific management of the intervention, particularly in cases of complex disease.
Plaque heterogeneity influences in-stent restenosis following drug-eluting stent implantation: Insights from patient-specific multiscale modelling / Corti, Anna; Dal Ferro, Lucia; Akyildiz, Ali C.; Migliavacca, Francesco; Mcginty, Sean; Chiastra, Claudio. - In: JOURNAL OF BIOMECHANICS. - ISSN 0021-9290. - 179:(2025). [10.1016/j.jbiomech.2024.112485]
Plaque heterogeneity influences in-stent restenosis following drug-eluting stent implantation: Insights from patient-specific multiscale modelling
Chiastra, Claudio
2025
Abstract
In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated. Here, an original patient-specific multiscale agent-based modelling framework was developed to investigate the interplay between drug release, plaque composition and intervention-induced inflammation on in-stent restenosis following drug-eluting stent implantation. The framework integrated a finite element simulation of stent expansion, with a drug transport simulation and an agent-based model of cellular dynamics. A patient-specific coronary cross-section with heterogeneous diseased tissue was considered and rigorously analyzed through a variety of scenarios, including different plaque compositions and different inflammatory responses. The analysis revealed three significant findings: (i) calcifications substantially impeded drug transport, resulting in drug-depleted regions and reduced stent efficacy; (ii) by impacting drug transport, variations in plaque composition influenced arterial wall response, with the fully-calcific scenario showing the greatest lumen area reduction; (iii) the impact of different drug receptor saturation conditions (obtained with different plaque compositions) was particularly evident under conditions of persistent inflammatory state. This study represents a significant advancement in multiscale modelling of in-stent restenosis following drug-eluting stent implantation. The results obtained provided deeper insights into the complex interactions among patient-specific plaque composition, inflammation and drug retention, suggesting a patient-specific management of the intervention, particularly in cases of complex disease.| File | Dimensione | Formato | |
|---|---|---|---|
| 2025 Corti - Plaque heterogeneity influences in-stent restenosis following drug-eluting stent implantation Insights from patient-specific multiscale modelling.pdf accesso aperto 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										6.58 MB
									 
										Formato
										Adobe PDF
									 | 6.58 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999354
			
		
	
	
	
			      	