Tumor cell migration within the microenvironment is a crucial aspect for cancer progression and, in this context, hypoxia has a significant role. An inadequate oxygen supply acts as an environmental stressor inducing migratory bias and phenotypic changes. In this paper, we propose a novel multi-scale mathematical model to analyze the pivotal role of Snail protein expression in the cellular responses to hypoxia. Starting from the description of single-cell dynamics driven by the Snail protein, we construct the corresponding kinetic transport equation that describes the evolution of the cell distribution. Subsequently, we employ proper scaling arguments to formally derive the equations for the statistical moments of the cell distribution, which govern the macroscopic tumor dynamics. Numerical simulations of the model are performed in various scenarios with biological relevance to provide insights into the role of the multiple tactic terms, the impact of Snail expression on cell proliferation, and the emergence of hypoxia-induced migration patterns. Moreover, quantitative comparisons with experimental data show the model's reliability in measuring the impact of Snail transcription on cell migratory potential. Through our findings, we shed light on the potential of our mathematical framework in advancing the understanding of the biological mechanisms driving tumor progression.
Multi-scale modeling of Snail-mediated response to hypoxia in tumor progression / Chiari, G.; Conte, M.; Delitala, M.. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 145:(2025), pp. 1-24. [10.1016/j.cnsns.2025.108673]
Multi-scale modeling of Snail-mediated response to hypoxia in tumor progression
Chiari G.;Conte M.;Delitala M.
2025
Abstract
Tumor cell migration within the microenvironment is a crucial aspect for cancer progression and, in this context, hypoxia has a significant role. An inadequate oxygen supply acts as an environmental stressor inducing migratory bias and phenotypic changes. In this paper, we propose a novel multi-scale mathematical model to analyze the pivotal role of Snail protein expression in the cellular responses to hypoxia. Starting from the description of single-cell dynamics driven by the Snail protein, we construct the corresponding kinetic transport equation that describes the evolution of the cell distribution. Subsequently, we employ proper scaling arguments to formally derive the equations for the statistical moments of the cell distribution, which govern the macroscopic tumor dynamics. Numerical simulations of the model are performed in various scenarios with biological relevance to provide insights into the role of the multiple tactic terms, the impact of Snail expression on cell proliferation, and the emergence of hypoxia-induced migration patterns. Moreover, quantitative comparisons with experimental data show the model's reliability in measuring the impact of Snail transcription on cell migratory potential. Through our findings, we shed light on the potential of our mathematical framework in advancing the understanding of the biological mechanisms driving tumor progression.File | Dimensione | Formato | |
---|---|---|---|
ConteChiari2025.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.16 MB
Formato
Adobe PDF
|
3.16 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999216