This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.
Modeling of IC Buffers from Channel Responses via Machine Learning Kernel Regression / Trinchero, Riccardo; Bradde, Tommaso; Telescu, Mihai; Stievano, Igor S.. - In: IEEE ELECTROMAGNETIC COMPATIBILITY MAGAZINE. - ISSN 2162-2264. - ELETTRONICO. - 13:2(2024), pp. 84-87. [10.1109/memc.2024.10711928]
Modeling of IC Buffers from Channel Responses via Machine Learning Kernel Regression
Trinchero, Riccardo;Bradde, Tommaso;Stievano, Igor S.
2024
Abstract
This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.| File | Dimensione | Formato | |
|---|---|---|---|
| jnl-2024-EMCMag-SPIbest.pdf accesso riservato 
											Descrizione: jnl-2024-EMCMag-SPIbest
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										422.94 kB
									 
										Formato
										Adobe PDF
									 | 422.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| jnl-2024-EMCMag-Authors.pdf accesso aperto 
											Descrizione: jnl-2024-EMCMag-Authors
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										460.7 kB
									 
										Formato
										Adobe PDF
									 | 460.7 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999012
			
		
	
	
	
			      	