This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.
Modeling of IC Buffers from Channel Responses via Machine Learning Kernel Regression / Trinchero, Riccardo; Bradde, Tommaso; Telescu, Mihai; Stievano, Igor S.. - In: IEEE ELECTROMAGNETIC COMPATIBILITY MAGAZINE. - ISSN 2162-2264. - ELETTRONICO. - 13:2(2024), pp. 84-87. [10.1109/memc.2024.10711928]
Modeling of IC Buffers from Channel Responses via Machine Learning Kernel Regression
Trinchero, Riccardo;Bradde, Tommaso;Stievano, Igor S.
2024
Abstract
This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.File | Dimensione | Formato | |
---|---|---|---|
jnl-2024-EMCMag-SPIbest.pdf
accesso riservato
Descrizione: jnl-2024-EMCMag-SPIbest
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
422.94 kB
Formato
Adobe PDF
|
422.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
jnl-2024-EMCMag-Authors.pdf
accesso aperto
Descrizione: jnl-2024-EMCMag-Authors
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
460.7 kB
Formato
Adobe PDF
|
460.7 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999012