We consider evolution equations for two classes of generalized anharmonic oscillators and the associated initial value problem in the space of tempered distributions. We prove that the Cauchy problem is well posed in anisotropic Shubin–Sobolev modulation spaces of Hilbert type, and we investigate propagation of suitable notions of singularities.
Propagation of singularities for anharmonic Schrödinger equations / Cappiello, Marco; Rodino, Luigi; Wahlberg, Patrik. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 66:4(2025), pp. 1-33. [10.1063/5.0234449]
Propagation of singularities for anharmonic Schrödinger equations
Marco Cappiello;Patrik Wahlberg
2025
Abstract
We consider evolution equations for two classes of generalized anharmonic oscillators and the associated initial value problem in the space of tempered distributions. We prove that the Cauchy problem is well posed in anisotropic Shubin–Sobolev modulation spaces of Hilbert type, and we investigate propagation of suitable notions of singularities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PropagationAnharmonic.pdf
embargo fino al 01/04/2026
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
4.67 MB
Formato
Adobe PDF
|
4.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
CappielloRodinoWahlberg3.pdf
accesso riservato
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
665.33 kB
Formato
Adobe PDF
|
665.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2998782