We consider evolution equations for two classes of generalized anharmonic oscillators and the associated initial value problem in the space of tempered distributions. We prove that the Cauchy problem is well posed in anisotropic Shubin–Sobolev modulation spaces of Hilbert type, and we investigate propagation of suitable notions of singularities.

Propagation of singularities for anharmonic Schrödinger equations / Cappiello, Marco; Rodino, Luigi; Wahlberg, Patrik. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 66:4(2025), pp. 1-33. [10.1063/5.0234449]

Propagation of singularities for anharmonic Schrödinger equations

Marco Cappiello;Patrik Wahlberg
2025

Abstract

We consider evolution equations for two classes of generalized anharmonic oscillators and the associated initial value problem in the space of tempered distributions. We prove that the Cauchy problem is well posed in anisotropic Shubin–Sobolev modulation spaces of Hilbert type, and we investigate propagation of suitable notions of singularities.
File in questo prodotto:
File Dimensione Formato  
PropagationAnharmonic.pdf

embargo fino al 01/04/2026

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 4.67 MB
Formato Adobe PDF
4.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
CappielloRodinoWahlberg3.pdf

accesso riservato

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 665.33 kB
Formato Adobe PDF
665.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2998782