This study investigates how varying the thickness of tetrahedral amorphous carbon (ta-C) thin films and incorporating a titanium adhesion layer influences the structural and electrochemical properties of molecularly imprinted ta-C thin film-based sensing platforms, aiming to develop a molecularly imprinted ta-C electrochemical sensor for dopamine (DA) detection with physiologically relevant sensitivity. This electrochemical sensing platform was designed by integrating ta-C with molecularly imprinted polymers (MIPs). The process involved depositing a ta-C thin film onto boron-doped p-type silicon wafers through a filtered cathodic vacuum arc (FCVA) system. Subsequently, the ta-C sensing platforms were electrochemically coated with the MIP layer (DA-imprinted polypyrrole). We evaluated three configurations: (i) a 15 nm ta-C layer, (ii) a 7 nm ta-C layer with a 20 nm titanium adhesion layer, and (iii) a 15 nm ta-C layer with a 20 nm titanium adhesion layer. Comprehensive structural and electrochemical characterization was performed to understand how these modifications affect sensor performance. The optimized MIP/ta-C sensor demonstrated a sensitivity of 0.16 mu A mu M- 1 cm- 2 and a limit of detection (LOD) of 48.6 nM, suitable for detecting DA at physiological levels. Leveraging the synergistic effects of ta-C coatings and molecular imprinting, as well as its compatibility with common complementary metal-oxide-semiconductor (CMOS) processes underlines its potential for integration into microanalytical systems, paving the way for miniaturized and high-throughput sensing platforms.

Development of smart molecularly imprinted tetrahedral amorphous carbon thin films for in vitro dopamine sensing / Rinaldi, G.; Nekoueian, K.; Etula, J.; Laurila, T.. - In: JOURNAL OF ELECTROANALYTICAL CHEMISTRY. - ISSN 1572-6657. - ELETTRONICO. - 976:(2025). [10.1016/j.jelechem.2024.118742]

Development of smart molecularly imprinted tetrahedral amorphous carbon thin films for in vitro dopamine sensing

Rinaldi G.;
2025

Abstract

This study investigates how varying the thickness of tetrahedral amorphous carbon (ta-C) thin films and incorporating a titanium adhesion layer influences the structural and electrochemical properties of molecularly imprinted ta-C thin film-based sensing platforms, aiming to develop a molecularly imprinted ta-C electrochemical sensor for dopamine (DA) detection with physiologically relevant sensitivity. This electrochemical sensing platform was designed by integrating ta-C with molecularly imprinted polymers (MIPs). The process involved depositing a ta-C thin film onto boron-doped p-type silicon wafers through a filtered cathodic vacuum arc (FCVA) system. Subsequently, the ta-C sensing platforms were electrochemically coated with the MIP layer (DA-imprinted polypyrrole). We evaluated three configurations: (i) a 15 nm ta-C layer, (ii) a 7 nm ta-C layer with a 20 nm titanium adhesion layer, and (iii) a 15 nm ta-C layer with a 20 nm titanium adhesion layer. Comprehensive structural and electrochemical characterization was performed to understand how these modifications affect sensor performance. The optimized MIP/ta-C sensor demonstrated a sensitivity of 0.16 mu A mu M- 1 cm- 2 and a limit of detection (LOD) of 48.6 nM, suitable for detecting DA at physiological levels. Leveraging the synergistic effects of ta-C coatings and molecular imprinting, as well as its compatibility with common complementary metal-oxide-semiconductor (CMOS) processes underlines its potential for integration into microanalytical systems, paving the way for miniaturized and high-throughput sensing platforms.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1572665724007203-main.pdf

accesso aperto

Descrizione: Development of smart molecularly imprinted tetrahedral amorphous carbon thin films for in vitro dopamine sensing
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2998635