Polymers are essential in modern life, but their large-scale production from non-renewable sources contributes to raw material depletion and environmental pollution. The shift from a linear to a circular economy aims to address these issues by promoting sustainable practices. Recent research focuses on incorporating natural fillers and biowastes to improve flame retardancy and reduce resource depletion. This work demonstrates the suitability of humic acids, biochar derived from both spent coffee grounds and the hydrothermal liquefaction of sludge, for use as flame-retardant additives in epoxy resins. The results are discussed in relation to the composition and preparation procedure of the composite materials. Particularly, the modification of epoxy chains with a proper coupling agent guarantees the uniform distribution of the waste throughout the polymer matrix.
Self-extinguishing epoxy nanocomposites containing industrial biowastes as sustainable flame-retardant additives / Climaco, Immacolata; Imparato, Claudio; Di Lauro, Francesca; Passaro, Jessica; Balsamo, Marco; Russo, Pietro; Vahabi, Henri; Malucelli, Giulio; Montagnaro, Fabio; Aronne, Antonio; Bifulco, Aurelio. - In: ENGINEERING PROCEEDINGS. - ISSN 2673-4591. - ELETTRONICO. - 90:1(2025). [10.3390/engproc2025090079]
Self-extinguishing epoxy nanocomposites containing industrial biowastes as sustainable flame-retardant additives
Giulio Malucelli;
2025
Abstract
Polymers are essential in modern life, but their large-scale production from non-renewable sources contributes to raw material depletion and environmental pollution. The shift from a linear to a circular economy aims to address these issues by promoting sustainable practices. Recent research focuses on incorporating natural fillers and biowastes to improve flame retardancy and reduce resource depletion. This work demonstrates the suitability of humic acids, biochar derived from both spent coffee grounds and the hydrothermal liquefaction of sludge, for use as flame-retardant additives in epoxy resins. The results are discussed in relation to the composition and preparation procedure of the composite materials. Particularly, the modification of epoxy chains with a proper coupling agent guarantees the uniform distribution of the waste throughout the polymer matrix.File | Dimensione | Formato | |
---|---|---|---|
2025 Self-Extinguishing Epoxy Nanocomposites Containing Industrial Biowastes as Sustainable Flame-Retardant Additives.pdf
accesso aperto
Descrizione: post-print versione editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2998633