This study explored the selective recovery of Co, La, and Sr from end-of-life solid oxide cells (SOCs) using ultrasound-assisted leaching in HCl. HCl concentration (1, 5, and 10 M) and solid-to-liquid ratio (S/L, 100 and 200 g/L) were varied to optimize the efficiency and the selectivity of Co, La, and Sr leaching. Then, they were recovered as oxalates at pH 0.7, 1, and 4. Using 10 M HCl and an S/L ratio of 100 g/L on ball-milled samples achieved 96–99% leaching efficiency but led to Ni impurities from the underneath layers. Thermal pre-treatment at 800 °C decreased Ni leaching by 90% but decreased target metals’ recovery by 9%. Direct leaching (without pre-treatments) with 1 M HCl and an S/L ratio of 200 g/L achieved up to 91% leaching efficiency, recovering 42% of Co, 93% of La, and 33% of Sr with minimal Ni impurities. A preliminary economic analysis indicated that avoiding pre-treatments can cut expenses by 96%. An economic analysis indicated that direct leaching is the most cost effective, reducing expenses by up to 96% compared to thermal pre-treatment and high HCl concentrations. This study highlights the potential for an efficient and cost-effective method for recycling Co, La, and Sr from EoL SOCs.

Optimising the Selective Leaching and Recovery of Cobalt, Lanthanum, and Strontium for Recycling End-of-Life Solid Oxide Cells / Bruno, Martina; Saffirio, Sofia; Smeacetto, Federico; Fiorilli, Sonia; Fiore, Silvia. - In: BATTERIES. - ISSN 2313-0105. - ELETTRONICO. - 11:4(2025). [10.3390/batteries11040124]

Optimising the Selective Leaching and Recovery of Cobalt, Lanthanum, and Strontium for Recycling End-of-Life Solid Oxide Cells

Bruno, Martina;Saffirio, Sofia;Smeacetto, Federico;Fiorilli, Sonia;Fiore, Silvia
2025

Abstract

This study explored the selective recovery of Co, La, and Sr from end-of-life solid oxide cells (SOCs) using ultrasound-assisted leaching in HCl. HCl concentration (1, 5, and 10 M) and solid-to-liquid ratio (S/L, 100 and 200 g/L) were varied to optimize the efficiency and the selectivity of Co, La, and Sr leaching. Then, they were recovered as oxalates at pH 0.7, 1, and 4. Using 10 M HCl and an S/L ratio of 100 g/L on ball-milled samples achieved 96–99% leaching efficiency but led to Ni impurities from the underneath layers. Thermal pre-treatment at 800 °C decreased Ni leaching by 90% but decreased target metals’ recovery by 9%. Direct leaching (without pre-treatments) with 1 M HCl and an S/L ratio of 200 g/L achieved up to 91% leaching efficiency, recovering 42% of Co, 93% of La, and 33% of Sr with minimal Ni impurities. A preliminary economic analysis indicated that avoiding pre-treatments can cut expenses by 96%. An economic analysis indicated that direct leaching is the most cost effective, reducing expenses by up to 96% compared to thermal pre-treatment and high HCl concentrations. This study highlights the potential for an efficient and cost-effective method for recycling Co, La, and Sr from EoL SOCs.
2025
File in questo prodotto:
File Dimensione Formato  
batteries-11-00124-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 6.09 MB
Formato Adobe PDF
6.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2998616