This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to electrospun, was chosen as a carrier due to its biocompatibility and tunable chemical stability when cross-linked, particularly using strong acids. PAN:PEDOT:PSS blends, prepared from PEDOT:PSS Clevios PH1000, were electrospun into fibers (PH1000) with a diameter of 515 & PLUSMN; 120 nm, which after being thermally annealed (PH1000 24H) and treated with heated sulfuric acid (PH1000 H2SO4), resulted in fibers with diameters of 437 & PLUSMN; 109 and 940 & PLUSMN; 210 nm, respectively. The fibers obtained over the stepwise process were characterized through infra-red/Raman spectroscopy and cyclic voltammetry. The final fiber meshes showed enhanced electroconductivity (3.2 x 10(-3) S cm(-1), four-points-assay). Fiber meshes biocompatibility was evaluated using fibroblasts and neural stem cells (NSCs) following, respectively, the ISO10993 guidelines and standard adhesion/proliferation assay. NSCs cultured on PH1000 H2SO4 fibers presented normal morphology and high proliferation rates (0.37 day(-1) vs. 0.16 day(-1) for culture plate), indicating high biocompatibility for NSCs. Still, the low initial NSC adhesion of 7% calls for improving seeding methodologies. PAN:PEDOT:PSS fibers, here successful produced for the first time, have potential applications in neural tissue engineering and soft electronics.

Production of Blended Poly(acrylonitrile): Poly(ethylenedioxythiophene):Poly(styrene sulfonate) Electrospun Fibers for Neural Applications / Garrudo, F. F. F.; Filippone, G.; Resina, L.; Silva, J. C.; Barbosa, F.; Ferreira, L. F. V.; Esteves, T.; Marques, A. C.; Morgado, J.; Ferreira, F. C.. - In: POLYMERS. - ISSN 2073-4360. - 15:13(2023). [10.3390/polym15132760]

Production of Blended Poly(acrylonitrile): Poly(ethylenedioxythiophene):Poly(styrene sulfonate) Electrospun Fibers for Neural Applications

Silva J. C.;
2023

Abstract

This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to electrospun, was chosen as a carrier due to its biocompatibility and tunable chemical stability when cross-linked, particularly using strong acids. PAN:PEDOT:PSS blends, prepared from PEDOT:PSS Clevios PH1000, were electrospun into fibers (PH1000) with a diameter of 515 & PLUSMN; 120 nm, which after being thermally annealed (PH1000 24H) and treated with heated sulfuric acid (PH1000 H2SO4), resulted in fibers with diameters of 437 & PLUSMN; 109 and 940 & PLUSMN; 210 nm, respectively. The fibers obtained over the stepwise process were characterized through infra-red/Raman spectroscopy and cyclic voltammetry. The final fiber meshes showed enhanced electroconductivity (3.2 x 10(-3) S cm(-1), four-points-assay). Fiber meshes biocompatibility was evaluated using fibroblasts and neural stem cells (NSCs) following, respectively, the ISO10993 guidelines and standard adhesion/proliferation assay. NSCs cultured on PH1000 H2SO4 fibers presented normal morphology and high proliferation rates (0.37 day(-1) vs. 0.16 day(-1) for culture plate), indicating high biocompatibility for NSCs. Still, the low initial NSC adhesion of 7% calls for improving seeding methodologies. PAN:PEDOT:PSS fibers, here successful produced for the first time, have potential applications in neural tissue engineering and soft electronics.
2023
File in questo prodotto:
File Dimensione Formato  
polymers-15-02760.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 5.27 MB
Formato Adobe PDF
5.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2997691