We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes. In the non-Markov case of the renewal process, we consider both light- and fat-tailed inter-reset distributions. We derive the propagator matrix in terms of discrete backward recurrence time probability density functions, and in the light-tailed case, we show the existence of a non-equilibrium steady state. In order to tackle the non-Markov scenario, we derive a defective propagator matrix, which describes an auxiliary walk characterized by killing the walker as soon as it hits target nodes. This propagator provides the information on the mean first passage statistics to the target nodes. We establish sufficient conditions for ergodicity of the walk under resetting. Furthermore, we discuss a generic resetting mechanism for which the walk is non-ergodic. Finally, we analyze inter-reset time distributions with infinite mean where we focus on the Sibuya case. We apply these results to study the mean first passage times for Markovian and non-Markovian (Sibuya) renewal resetting protocols in realizations of Watts-Strogatz and Barabasi-Albert random graphs. We show nontrivial behavior of the dependence of the mean first passage time on the proportions of the relocation nodes, target nodes, and of the resetting rates. It turns out that, in the large-world case of the Watts-Strogatz graph, the efficiency of a random searcher particularly benefits from the presence of resets.
Random walks with stochastic resetting in complex networks: A discrete-time approach / Michelitsch, Thomas M.; D'Onofrio, Giuseppe; Polito, Federico; Riascos, Alejandro P.. - In: CHAOS. - ISSN 1054-1500. - 35:1(2025), pp. 1-25. [10.1063/5.0238517]
Random walks with stochastic resetting in complex networks: A discrete-time approach
D'Onofrio, Giuseppe;
2025
Abstract
We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes. In the non-Markov case of the renewal process, we consider both light- and fat-tailed inter-reset distributions. We derive the propagator matrix in terms of discrete backward recurrence time probability density functions, and in the light-tailed case, we show the existence of a non-equilibrium steady state. In order to tackle the non-Markov scenario, we derive a defective propagator matrix, which describes an auxiliary walk characterized by killing the walker as soon as it hits target nodes. This propagator provides the information on the mean first passage statistics to the target nodes. We establish sufficient conditions for ergodicity of the walk under resetting. Furthermore, we discuss a generic resetting mechanism for which the walk is non-ergodic. Finally, we analyze inter-reset time distributions with infinite mean where we focus on the Sibuya case. We apply these results to study the mean first passage times for Markovian and non-Markovian (Sibuya) renewal resetting protocols in realizations of Watts-Strogatz and Barabasi-Albert random graphs. We show nontrivial behavior of the dependence of the mean first passage time on the proportions of the relocation nodes, target nodes, and of the resetting rates. It turns out that, in the large-world case of the Watts-Strogatz graph, the efficiency of a random searcher particularly benefits from the presence of resets.File | Dimensione | Formato | |
---|---|---|---|
Michelitsch_DOnofrio_Polito_Riascos_2025_Random_walks_with_stochastic_resetting_in_complex_.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Michelitsch_DOnofrio_Polito_Riascos_arxiv_2versione.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2997472