The aim of this paper is twofold. On one hand we prove that the Moreau's sweeping processes driven by a uniformly prox-regular moving set with local bounded retraction have a unique solution provided that the coefficient of prox-regularity is larger than the size of any jump of the driving set. On the other hand we show how the case of local bounded retraction can be easily reduced to the 1-Lipschitz continuous case: indeed we first solve the Lipschitz continuous case by means of the so called "catching-up algorithm", and we reduce the local bounded retraction case to the Lipschitz one by using a reparametrization technique for functions with values in the family of prox-regular sets.

Prox-Regular Sweeping Processes with Bounded Retraction / Recupero, Vincenzo. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 32:3(2025), pp. 731-756.

Prox-Regular Sweeping Processes with Bounded Retraction

Vincenzo Recupero
2025

Abstract

The aim of this paper is twofold. On one hand we prove that the Moreau's sweeping processes driven by a uniformly prox-regular moving set with local bounded retraction have a unique solution provided that the coefficient of prox-regularity is larger than the size of any jump of the driving set. On the other hand we show how the case of local bounded retraction can be easily reduced to the 1-Lipschitz continuous case: indeed we first solve the Lipschitz continuous case by means of the so called "catching-up algorithm", and we reduce the local bounded retraction case to the Lipschitz one by using a reparametrization technique for functions with values in the family of prox-regular sets.
2025
File in questo prodotto:
File Dimensione Formato  
jca2614-b.pdf

accesso riservato

Descrizione: articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 205.44 kB
Formato Adobe PDF
205.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
RockafellarJCA-recupero.pdf

accesso riservato

Descrizione: preprint
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 445.73 kB
Formato Adobe PDF
445.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2997191