The development and implementation of a national geoportal designed to optimize the planning and management of integrated Renewable Energy Communities (RECs) is presented in this study. This innovative tool facilitates the identification of optimal energy system configurations by selecting available renewable resources and technologies and determining community membership based on assigned input parameters. These parameters include electrical load profiles, energy prices, renewable resource availability, technological characteristics, socio-economic conditions, and territorial constraints. A multi-objective optimization framework was employed to address energy, economic, environmental, and social priorities simultaneously. The methodology adopts a place-based approach, enabling the application of energy management and optimization models tailored to the specific characteristics of each case study and the corresponding input data. The proposed geoportal incorporates features such as flexibility, scalability, and applicability to real-world territorial contexts, while providing decision support to regional planners and stakeholders. Scalability was achieved through the integration and management of spatial and temporal datasets across varying scales. The study evaluates five scenarios, including the maximum renewable energy potential utilizing solar, wind, and biomass renewable energy sources (RES) technologies, and two REC scenarios emphasizing photovoltaic (PV) energy sharing between sectors, residential prosumers, and consumers. Performance metrics and indexes were employed to assess the energy, economic, environmental, and social benefits of RES generation, distribution, and sharing. The findings indicate that REC scenarios featuring energy sharing achieve higher levels of self-consumption and self-sufficiency compared to isolated configurations. Future iterations of the geoportal aim to extend its application to additional territories, thereby enhancing the self-sufficiency of Territorial Energy Communities (TECs) and advancing sustainable energy practices on a broader scale.

An Italian Geoportal for Renewable Energy Communities / Mutani, Guglielmina; Morando, Valerio; Zhou, Xuan; Tayefinasrabad, Mehran; Tundo, Antonella. - In: JOURNAL OF SUSTAINABILITY FOR ENERGY. - ISSN 2958-1907. - ELETTRONICO. - 3:4(2024), pp. 244-264. [10.56578/jse030404]

An Italian Geoportal for Renewable Energy Communities

Mutani, Guglielmina;Morando, Valerio;Zhou, Xuan;Tayefinasrabad, Mehran;
2024

Abstract

The development and implementation of a national geoportal designed to optimize the planning and management of integrated Renewable Energy Communities (RECs) is presented in this study. This innovative tool facilitates the identification of optimal energy system configurations by selecting available renewable resources and technologies and determining community membership based on assigned input parameters. These parameters include electrical load profiles, energy prices, renewable resource availability, technological characteristics, socio-economic conditions, and territorial constraints. A multi-objective optimization framework was employed to address energy, economic, environmental, and social priorities simultaneously. The methodology adopts a place-based approach, enabling the application of energy management and optimization models tailored to the specific characteristics of each case study and the corresponding input data. The proposed geoportal incorporates features such as flexibility, scalability, and applicability to real-world territorial contexts, while providing decision support to regional planners and stakeholders. Scalability was achieved through the integration and management of spatial and temporal datasets across varying scales. The study evaluates five scenarios, including the maximum renewable energy potential utilizing solar, wind, and biomass renewable energy sources (RES) technologies, and two REC scenarios emphasizing photovoltaic (PV) energy sharing between sectors, residential prosumers, and consumers. Performance metrics and indexes were employed to assess the energy, economic, environmental, and social benefits of RES generation, distribution, and sharing. The findings indicate that REC scenarios featuring energy sharing achieve higher levels of self-consumption and self-sufficiency compared to isolated configurations. Future iterations of the geoportal aim to extend its application to additional territories, thereby enhancing the self-sufficiency of Territorial Energy Communities (TECs) and advancing sustainable energy practices on a broader scale.
File in questo prodotto:
File Dimensione Formato  
JSE_03.04_04.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2996966