This study presents direct numerical simulation results of two-layer Rayleigh-Benard convection, investigating the previously unexplored Rayleigh–Weber parameter space 106< Ra < 108 and 102 < We < 103. Global properties, such as the Nusselt and Reynolds numbers, are compared against the extended Grossmann-Lohse theory for two fluid layers, confirming a weak Weber number dependence for all global quantities and considerably larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal that the interface fluctuates more intensely for larger Weber and smaller Rayleigh numbers, something also reflected in the increased temperature root mean square values next to the interface. The dynamics of the deformed two-fluid interface is further investigated using spectral analysis. Temporal and spatial spectrum distributions reveal a capillary wave range at small Weber and large Rayleigh numbers, and a secondary energy peak at smaller Rayleigh numbers. Furthermore, the maxima of the space–time spectra lie in an intermediate dispersion regime, between the theoretical predictions for capillary and gravity-capillary waves, showing that the gravitational energy of the interfacial waves is strongly altered by temperature gradients.
Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh–Bénard convection / Demou, Andreas D.; Scapin, Nicolò; Crialesi-Esposito, Marco; Costa, Pedro; Spiga, Filippo; Brandt, Luca. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 996:(2024). [10.1017/jfm.2024.805]
Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh–Bénard convection
Brandt, Luca
2024
Abstract
This study presents direct numerical simulation results of two-layer Rayleigh-Benard convection, investigating the previously unexplored Rayleigh–Weber parameter space 106< Ra < 108 and 102 < We < 103. Global properties, such as the Nusselt and Reynolds numbers, are compared against the extended Grossmann-Lohse theory for two fluid layers, confirming a weak Weber number dependence for all global quantities and considerably larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal that the interface fluctuates more intensely for larger Weber and smaller Rayleigh numbers, something also reflected in the increased temperature root mean square values next to the interface. The dynamics of the deformed two-fluid interface is further investigated using spectral analysis. Temporal and spatial spectrum distributions reveal a capillary wave range at small Weber and large Rayleigh numbers, and a secondary energy peak at smaller Rayleigh numbers. Furthermore, the maxima of the space–time spectra lie in an intermediate dispersion regime, between the theoretical predictions for capillary and gravity-capillary waves, showing that the gravitational energy of the interfacial waves is strongly altered by temperature gradients.File | Dimensione | Formato | |
---|---|---|---|
effects-of-rayleigh-and-weber-numbers-on-two-layer-turbulent-rayleigh-benard-convection.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.39 MB
Formato
Adobe PDF
|
3.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Two_Layer_RB-3 copy.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
7.56 MB
Formato
Adobe PDF
|
7.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2996264