This study presents a predictive maintenance system designed for industrial Internet of Things (IoT) environments, focusing on resource efficiency and adaptability. The system utilizes Nicla Sense ME sensors, a Raspberry Pi-based concentrator for real-time monitoring, and a Long Short-Term Memory (LSTM) machine-learning model for predictive analysis. Notably, the LSTM algorithm is an example of how the system's sandbox environment can be used, allowing external users to easily integrate custom models without altering the core platform. In the laboratory, the system achieved a Root Mean Squared Error (RMSE) of 0.0156, with high accuracy across all sensors, detecting intentional anomalies with a 99.81% accuracy rate. In the real-world phase, the system maintained robust performance, with sensors recording a maximum Mean Absolute Error (MAE) of 0.1821, an R-squared value of 0.8898, and a Mean Absolute Percentage Error (MAPE) of 0.72%, demonstrating precision even in the presence of environmental interferences. Additionally, the architecture supports scalability, accommodating up to 64 sensor nodes without compromising performance. The sandbox environment enhances the platform's versatility, enabling customization for diverse industrial applications. The results highlight the significant benefits of predictive maintenance in industrial contexts, including reduced downtime, optimized resource use, and improved operational efficiency. These findings underscore the potential of integrating Artificial Intelligence (AI)-driven predictive maintenance into constrained environments, offering a reliable solution for dynamic, real-time industrial operations.
A Scalable Fog Computing Solution for Industrial Predictive Maintenance and Customization / D'Agostino, Pietro; Violante, Massimo; Macario, Gianpaolo. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 14:1(2025). [10.3390/electronics14010024]
A Scalable Fog Computing Solution for Industrial Predictive Maintenance and Customization
Pietro D'Agostino;Massimo Violante;
2025
Abstract
This study presents a predictive maintenance system designed for industrial Internet of Things (IoT) environments, focusing on resource efficiency and adaptability. The system utilizes Nicla Sense ME sensors, a Raspberry Pi-based concentrator for real-time monitoring, and a Long Short-Term Memory (LSTM) machine-learning model for predictive analysis. Notably, the LSTM algorithm is an example of how the system's sandbox environment can be used, allowing external users to easily integrate custom models without altering the core platform. In the laboratory, the system achieved a Root Mean Squared Error (RMSE) of 0.0156, with high accuracy across all sensors, detecting intentional anomalies with a 99.81% accuracy rate. In the real-world phase, the system maintained robust performance, with sensors recording a maximum Mean Absolute Error (MAE) of 0.1821, an R-squared value of 0.8898, and a Mean Absolute Percentage Error (MAPE) of 0.72%, demonstrating precision even in the presence of environmental interferences. Additionally, the architecture supports scalability, accommodating up to 64 sensor nodes without compromising performance. The sandbox environment enhances the platform's versatility, enabling customization for diverse industrial applications. The results highlight the significant benefits of predictive maintenance in industrial contexts, including reduced downtime, optimized resource use, and improved operational efficiency. These findings underscore the potential of integrating Artificial Intelligence (AI)-driven predictive maintenance into constrained environments, offering a reliable solution for dynamic, real-time industrial operations.File | Dimensione | Formato | |
---|---|---|---|
electronics-14-00024.pdf
accesso aperto
Descrizione: Testo dell'articolo
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2996222