Initial efforts to report artificial intelligence (AI) incidents aimed to improve transparency, yet systematic studies have been rare. We analyzed all 639 real-world incidents in the emerging AI Incidents Database, devising an ethical framework focused on evaluating incidents along the dimensions of what, where, who, and how.

Decoding Real-World Artificial Intelligence Incidents / De Miguel Velázquez, Julia; Šćepanović, Sanja; Gvirtz, Andrés; Quercia, Daniele. - In: COMPUTER. - ISSN 0018-9162. - 57:11(2024), pp. 71-81. [10.1109/mc.2024.3432492]

Decoding Real-World Artificial Intelligence Incidents

Quercia, Daniele
2024

Abstract

Initial efforts to report artificial intelligence (AI) incidents aimed to improve transparency, yet systematic studies have been rare. We analyzed all 639 real-world incidents in the emerging AI Incidents Database, devising an ethical framework focused on evaluating incidents along the dimensions of what, where, who, and how.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2996104
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo