Initial efforts to report artificial intelligence (AI) incidents aimed to improve transparency, yet systematic studies have been rare. We analyzed all 639 real-world incidents in the emerging AI Incidents Database, devising an ethical framework focused on evaluating incidents along the dimensions of what, where, who, and how.

Decoding Real-World Artificial Intelligence Incidents / De Miguel Velázquez, Julia; Šćepanović, Sanja; Gvirtz, Andrés; Quercia, Daniele. - In: COMPUTER. - ISSN 0018-9162. - 57:11(2024), pp. 71-81. [10.1109/mc.2024.3432492]

Decoding Real-World Artificial Intelligence Incidents

Quercia, Daniele
2024

Abstract

Initial efforts to report artificial intelligence (AI) incidents aimed to improve transparency, yet systematic studies have been rare. We analyzed all 639 real-world incidents in the emerging AI Incidents Database, devising an ethical framework focused on evaluating incidents along the dimensions of what, where, who, and how.
2024
File in questo prodotto:
File Dimensione Formato  
decoding24_ieee.pdf

accesso riservato

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 891.54 kB
Formato Adobe PDF
891.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Decoding_Real-World_Artificial_Intelligence_Incidents.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 927.7 kB
Formato Adobe PDF
927.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2996104