This research addresses a gap in the literature by exploring the combined use of hemp and hemp hurds in composites, presenting a novel approach to bio-composite development. We report on the mechanical properties of epoxy resin composites reinforced with hemp fibers and hemp hurds, selected for their sustainability, biodegradability, and environmental benefits. These natural fibers offer a renewable alternative to synthetic fibers, aligning with the growing demand for eco-friendly materials in various industries. The primary objective was to evaluate how different filler contents and hemp hurd-to-hemp fiber ratios affect the composite’s performance. Composites with 1:1 and 3:1 ratios were prepared at filler concentrations ranging from 1 wt.% to 10 wt.%. Tensile tests revealed that the 3:1 ratio composites exhibited better stiffness and tensile strength, with a notable UTS of 19.8 ± 0.4 MPa at 10 wt.%, which represents a 160% increase over neat epoxy. The 1:1 ratio composites showed significant reductions in mechanical properties at higher filler contents due to filler agglomeration. The study concludes that a 3:1 hemp hurd-to-hemp fiber ratio optimizes mechanical properties, offering a sustainable solution for enhancing composite materials’ performance in industrial applications.

Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening / Zecchi, Silvia; Cristoforo, Giovanni; Bartoli, Mattia; Rosso, Carlo; Tagliaferro, Alberto. - In: JOURNAL OF COMPOSITES SCIENCE. - ISSN 2504-477X. - 8:11(2024). [10.3390/jcs8110473]

Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening

Zecchi, Silvia;Cristoforo, Giovanni;Bartoli, Mattia;Rosso, Carlo;Tagliaferro, Alberto
2024

Abstract

This research addresses a gap in the literature by exploring the combined use of hemp and hemp hurds in composites, presenting a novel approach to bio-composite development. We report on the mechanical properties of epoxy resin composites reinforced with hemp fibers and hemp hurds, selected for their sustainability, biodegradability, and environmental benefits. These natural fibers offer a renewable alternative to synthetic fibers, aligning with the growing demand for eco-friendly materials in various industries. The primary objective was to evaluate how different filler contents and hemp hurd-to-hemp fiber ratios affect the composite’s performance. Composites with 1:1 and 3:1 ratios were prepared at filler concentrations ranging from 1 wt.% to 10 wt.%. Tensile tests revealed that the 3:1 ratio composites exhibited better stiffness and tensile strength, with a notable UTS of 19.8 ± 0.4 MPa at 10 wt.%, which represents a 160% increase over neat epoxy. The 1:1 ratio composites showed significant reductions in mechanical properties at higher filler contents due to filler agglomeration. The study concludes that a 3:1 hemp hurd-to-hemp fiber ratio optimizes mechanical properties, offering a sustainable solution for enhancing composite materials’ performance in industrial applications.
File in questo prodotto:
File Dimensione Formato  
jcs-08-00473.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.59 MB
Formato Adobe PDF
8.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995992