In recent years, the use of plant fibres in Textile-Reinforced Mortar (TRM) composites emerged as a valuable solution to increase their sustainability. Several studies carried out to me-chanically characterize the so-called Natural TRMs, although showing promising results, also em-phasised some drawbacks due to a severe deformability of the system and to durability issues. This study aims at improving the mechanical behaviour of Natural TRMs including impregnated flax textile (Flax TRMs) by the addition of short curauá fibres within the matrix. Flax TRM specimens were tested in tension to assess the influence of the fibre-reinforced mortar on the composite re-sponse. The crack pattern developed during the test was investigated via Digital Image Correlation analysis and by means of an analytical simplified model proposed by the authors. The addition of curauá fibres resulted in a denser crack pattern and in a significant decrease of the mean crack width (around 20%). The overall tensile response of Flax TRMs including curauá fibres resulted closer to the ideal three-linear behaviour of strain-hardening TRM composites with respect to the conventional Flax TRMs by also presenting an increase of dissipated energy of around 45%. This study paves the way for further analysis aimed at enhancing the mechanical performance of Natural TRMs adopting sustainable improvement techniques.
Mechanical Response and Analysis of Cracking Process in Hybrid {TRM} Composites with Flax Textile and Curau{\'{a}} Fibres / Ferrara, Giuseppe; Pepe, Marco; Dias Tol(\^(e))do Filho, Romildo; Martinelli, Enzo. - In: POLYMERS. - ISSN 2073-4360. - 13:5(2021), pp. 1-14. [10.3390/polym13050715]
Mechanical Response and Analysis of Cracking Process in Hybrid {TRM} Composites with Flax Textile and Curau{\'{a}} Fibres
Giuseppe Ferrara;Marco Pepe;
2021
Abstract
In recent years, the use of plant fibres in Textile-Reinforced Mortar (TRM) composites emerged as a valuable solution to increase their sustainability. Several studies carried out to me-chanically characterize the so-called Natural TRMs, although showing promising results, also em-phasised some drawbacks due to a severe deformability of the system and to durability issues. This study aims at improving the mechanical behaviour of Natural TRMs including impregnated flax textile (Flax TRMs) by the addition of short curauá fibres within the matrix. Flax TRM specimens were tested in tension to assess the influence of the fibre-reinforced mortar on the composite re-sponse. The crack pattern developed during the test was investigated via Digital Image Correlation analysis and by means of an analytical simplified model proposed by the authors. The addition of curauá fibres resulted in a denser crack pattern and in a significant decrease of the mean crack width (around 20%). The overall tensile response of Flax TRMs including curauá fibres resulted closer to the ideal three-linear behaviour of strain-hardening TRM composites with respect to the conventional Flax TRMs by also presenting an increase of dissipated energy of around 45%. This study paves the way for further analysis aimed at enhancing the mechanical performance of Natural TRMs adopting sustainable improvement techniques.File | Dimensione | Formato | |
---|---|---|---|
polymers-13-00715-v3.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.21 MB
Formato
Adobe PDF
|
3.21 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995838