In this paper, we perform a joint design of goal legibility and recognition in a cooperative, multi -agent pathfinding setting with partial observability. More specifically, we consider a set of identical agents (the actors) that move in an environment only partially observable to an observer in the loop. The actors are tasked with reaching a set of locations that need to be serviced in a timely fashion. The observer monitors the actors' behavior from a distance and needs to identify each actor's destination based on the actor's observable movements. Our approach generates legible paths for the actors; namely, it constructs one path from the origin to each destination so that these paths overlap as little as possible while satisfying budget constraints. It also equips the observer with a goal -recognition mapping between unique sequences of observations and destinations, ensuring that the observer can infer an actor's destination by making the minimum number of observations (legibility delay). Our method substantially extends previous work, which is limited to an observer with full observability, showing that optimizing pathfinding for goal legibility and recognition can be performed via a reformulation into a classical minimum cost flow problem in the partially observable case when the algorithms for the fully observable case are appropriately modified. Our empirical evaluation shows that our techniques are as effective in partially observable settings as in fully observable ones.

Optimizing pathfinding for goal legibility and recognition in cooperative partially observable environments / Bernardini, S.; Fagnani, F.; Neacsu, A.; Franco, S.. - In: ARTIFICIAL INTELLIGENCE. - ISSN 0004-3702. - 333:(2024). [10.1016/j.artint.2024.104148]

Optimizing pathfinding for goal legibility and recognition in cooperative partially observable environments

Fagnani F.;
2024

Abstract

In this paper, we perform a joint design of goal legibility and recognition in a cooperative, multi -agent pathfinding setting with partial observability. More specifically, we consider a set of identical agents (the actors) that move in an environment only partially observable to an observer in the loop. The actors are tasked with reaching a set of locations that need to be serviced in a timely fashion. The observer monitors the actors' behavior from a distance and needs to identify each actor's destination based on the actor's observable movements. Our approach generates legible paths for the actors; namely, it constructs one path from the origin to each destination so that these paths overlap as little as possible while satisfying budget constraints. It also equips the observer with a goal -recognition mapping between unique sequences of observations and destinations, ensuring that the observer can infer an actor's destination by making the minimum number of observations (legibility delay). Our method substantially extends previous work, which is limited to an observer with full observability, showing that optimizing pathfinding for goal legibility and recognition can be performed via a reformulation into a classical minimum cost flow problem in the partially observable case when the algorithms for the fully observable case are appropriately modified. Our empirical evaluation shows that our techniques are as effective in partially observable settings as in fully observable ones.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo