The scope of this work rests at the interface between food and energy sustainability. Thermochemical conversion of biomass is an attractive strategy for the production of low-cost biofuels, and bio-based insecticides are a more sustainable and often safer alternative for pest management in agricultural production. This work demonstrates a complimentary strategy to access both biofuels and a bio-based insecticide through a catalytic fast pyrolysis process. Technoeconomic modeling shows the bioinsecticidebio-based insecticide can be produced at a cost ≤1.7$ per kg while fully formulated bioinsecticidebio-based insecticides typically sell for ≥6$ per kg, which can significantly reduce the biofuel selling price. Supply chain analysis shows a 46-88% reduction in green-house gas emissions for this agrochemical can be achieved. By using insecticidal activity data from two well-known crop pests, spotted-wing drosophila (Drosophila suzukii, Matsumura) and oriental fruit moth (Grapholita molesta, Herbst), with an analytical analysis, which achieved ≥99% mass balance closure on the thermochemically derived distillate product, a structure-function relationship between phenol alkylation and insecticidal activity is proposed. An ecotoxicological assessment of the bio-based insecticide was performed using existing data and prediction tools across 18 metrics. It is estimated that a 2000 tonne per day biorefinery can supply 1-5% of the market, which is typical for other moderately scaled chemicals. The mixture of alkylated phenols, used as a bio-based insecticide, is an ideal coproduct that overcomes separation challenges associated with thermochemical streams, such as heterogeneity and reactivity, while providing a more sustainable source for agrochemicals. Synergistic strategies for energy and food production, such as coproduction of bio-based insecticides with biofuels, can be a viable approach to improve sustainability in both sectors. This journal is

Efficacy, economics, and sustainability of bio-based insecticides from thermochemical biorefineries / Wilson, A. N.; Grieshop, M. J.; Roback, J.; Dell'Orco, S.; Huang, J.; Perkins, J. A.; Nicholson, S.; Chiaramonti, D.; Nimlos, M. R.; Christensen, E.; Iisa, K.; Harris, K.; Dutta, A.; Dorgan, J. R.; Schaidle, J. A.. - In: GREEN CHEMISTRY. - ISSN 1463-9262. - 23:24(2021), pp. 10145-10156. [10.1039/d1gc02956h]

Efficacy, economics, and sustainability of bio-based insecticides from thermochemical biorefineries

Chiaramonti D.;
2021

Abstract

The scope of this work rests at the interface between food and energy sustainability. Thermochemical conversion of biomass is an attractive strategy for the production of low-cost biofuels, and bio-based insecticides are a more sustainable and often safer alternative for pest management in agricultural production. This work demonstrates a complimentary strategy to access both biofuels and a bio-based insecticide through a catalytic fast pyrolysis process. Technoeconomic modeling shows the bioinsecticidebio-based insecticide can be produced at a cost ≤1.7$ per kg while fully formulated bioinsecticidebio-based insecticides typically sell for ≥6$ per kg, which can significantly reduce the biofuel selling price. Supply chain analysis shows a 46-88% reduction in green-house gas emissions for this agrochemical can be achieved. By using insecticidal activity data from two well-known crop pests, spotted-wing drosophila (Drosophila suzukii, Matsumura) and oriental fruit moth (Grapholita molesta, Herbst), with an analytical analysis, which achieved ≥99% mass balance closure on the thermochemically derived distillate product, a structure-function relationship between phenol alkylation and insecticidal activity is proposed. An ecotoxicological assessment of the bio-based insecticide was performed using existing data and prediction tools across 18 metrics. It is estimated that a 2000 tonne per day biorefinery can supply 1-5% of the market, which is typical for other moderately scaled chemicals. The mixture of alkylated phenols, used as a bio-based insecticide, is an ideal coproduct that overcomes separation challenges associated with thermochemical streams, such as heterogeneity and reactivity, while providing a more sustainable source for agrochemicals. Synergistic strategies for energy and food production, such as coproduction of bio-based insecticides with biofuels, can be a viable approach to improve sustainability in both sectors. This journal is
2021
File in questo prodotto:
File Dimensione Formato  
d1gc02956h.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995511