The Ingress of Coolant Event (ICE) in the plasma chamber is one of the main safety issues in nuclear fusion plants. The ICE is caused by the rupture of the coolant tubes installed in the plasma facing components; the coolant ingress causes a pressure rise in the plasma chamber and vacuum vessel, normally under high-vacuum conditions. To mitigate the system pressurization leading to mechanical structure failure, a pressure suppression system is installed. Safety analyses of the hypothetical challenging accidental scenarios can be conducted by deterministic models that need to be validated against experimental data characterizing the target phenomena. The paper presents a study of different nodalization strategies for modeling a suppression tank for fusion plants, using the best estimate thermal-hydraulic system code TRACE (TRAC/RELAP Advanced Computational Engine). The TRACE code is developed by USNRC to perform safety analyses for light water fission reactors. Both mono-dimensional and three-dimensional approaches were adopted to model the suppression tank. The experimental data from the JAERI Integrated ICE facility (scaling factor of 1/1600 with respect to the ITER-FEAT design) was used to benchmark different nodalization options. In addition to the qualitative accuracy evaluation, the Fast Fourier Transform Based Method (FFTBM) was applied to quantify the accuracy of the code results for different nodalizations.

Analysis of nodalization strategies to model a suppression tank for fusion plants with TRACE code / Bersano, A.; Mascari, F.; Bertani, C.. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - 169:(2021). [10.1016/j.fusengdes.2021.112626]

Analysis of nodalization strategies to model a suppression tank for fusion plants with TRACE code

Bersano A.;Bertani C.
2021

Abstract

The Ingress of Coolant Event (ICE) in the plasma chamber is one of the main safety issues in nuclear fusion plants. The ICE is caused by the rupture of the coolant tubes installed in the plasma facing components; the coolant ingress causes a pressure rise in the plasma chamber and vacuum vessel, normally under high-vacuum conditions. To mitigate the system pressurization leading to mechanical structure failure, a pressure suppression system is installed. Safety analyses of the hypothetical challenging accidental scenarios can be conducted by deterministic models that need to be validated against experimental data characterizing the target phenomena. The paper presents a study of different nodalization strategies for modeling a suppression tank for fusion plants, using the best estimate thermal-hydraulic system code TRACE (TRAC/RELAP Advanced Computational Engine). The TRACE code is developed by USNRC to perform safety analyses for light water fission reactors. Both mono-dimensional and three-dimensional approaches were adopted to model the suppression tank. The experimental data from the JAERI Integrated ICE facility (scaling factor of 1/1600 with respect to the ITER-FEAT design) was used to benchmark different nodalization options. In addition to the qualitative accuracy evaluation, the Fast Fourier Transform Based Method (FFTBM) was applied to quantify the accuracy of the code results for different nodalizations.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0920379621004026-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995465
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo