Cryo-electron microscopy (cryo-EM) has recently emerged as a prominent biophysical method for macromolecular structure determination. Many research efforts have been devoted to produce cryo-EM images, density maps, at near-atomic resolution. Despite many advances in technology, the resolution of the generated density maps may not be sufficiently adequate and informative to directly construct the atomic structure of proteins. At medium-resolution (∼4-10 Å), secondary structure elements (α-helices and β-sheets) are discernible, whereas finding the correspondence of secondary structure elements detected in the density map with those on the sequence remains a challenging problem. In this paper, an automatic framework is proposed to solve α-helix correspondence problem in three-dimensional space. Through modeling of the sequence with the aid of a novel strategy, the α-helix correspondence problem is initially transformed into a complete weighted bipartite graph matching problem. An innovative correlation-based scoring function based on a well-known and robust statistical method is proposed for weighting the graph. Moreover, two local optimization algorithms, which are Greedy and Improved Greedy algorithms, have been presented to find α-helix correspondence. A widely used data set including 16 reconstructed and 4 experimental cryo-EM maps were chosen to verify the accuracy and reliability of the proposed automatic method. The experimental results demonstrate that the automatic method is highly efficient (86.25% accuracy), robust (11.3% error rate), fast (∼1.4 s), and works independently from cryo-EM skeleton.

Solving the α-helix correspondence problem at medium-resolution Cryo-EM maps through modeling and 3D matching / Behkamal, Bahareh; Naghibzadeh, Mahmoud; Pagnani, Andrea; Saberi, Mohammad Reza; Al Nasr, Kamal. - In: JOURNAL OF MOLECULAR GRAPHICS & MODELLING. - ISSN 1093-3263. - 103:(2021). [10.1016/j.jmgm.2020.107815]

Solving the α-helix correspondence problem at medium-resolution Cryo-EM maps through modeling and 3D matching

Pagnani, Andrea;
2021

Abstract

Cryo-electron microscopy (cryo-EM) has recently emerged as a prominent biophysical method for macromolecular structure determination. Many research efforts have been devoted to produce cryo-EM images, density maps, at near-atomic resolution. Despite many advances in technology, the resolution of the generated density maps may not be sufficiently adequate and informative to directly construct the atomic structure of proteins. At medium-resolution (∼4-10 Å), secondary structure elements (α-helices and β-sheets) are discernible, whereas finding the correspondence of secondary structure elements detected in the density map with those on the sequence remains a challenging problem. In this paper, an automatic framework is proposed to solve α-helix correspondence problem in three-dimensional space. Through modeling of the sequence with the aid of a novel strategy, the α-helix correspondence problem is initially transformed into a complete weighted bipartite graph matching problem. An innovative correlation-based scoring function based on a well-known and robust statistical method is proposed for weighting the graph. Moreover, two local optimization algorithms, which are Greedy and Improved Greedy algorithms, have been presented to find α-helix correspondence. A widely used data set including 16 reconstructed and 4 experimental cryo-EM maps were chosen to verify the accuracy and reliability of the proposed automatic method. The experimental results demonstrate that the automatic method is highly efficient (86.25% accuracy), robust (11.3% error rate), fast (∼1.4 s), and works independently from cryo-EM skeleton.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1093326320306045-main.pdf

accesso riservato

Descrizione: testo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995442