Background: Gait analysis aids in evaluation, classification, and follow-up of gait pattern over time in children with cerebral palsy (CP). The analysis of sagittal plane joint kinematics is of special interest to assess flexed knee gait and ankle joint deviations that commonly progress with age and indicate deterioration of gait. Although most children with CP are ambulatory, no objective quantification of gait is currently included in any of the known international follow-up programs. Is video-based 2-dimensional markerless (2D ML) gait analysis with automated processing a feasible and useful tool to quantify deviations, evaluate and classify gait, in children with CP? Methods: Twenty children with bilateral CP with Gross Motor Function Classification Scale (GMFCS) levels I–III, from five regions in Sweden, were included from the national CP registry. A single RGB-Depth video camera, sensitive to depth and contrast, was positioned laterally to a green walkway and background, with four light sources. A previously validated markerless method was employed to estimate sagittal plane hip, knee, ankle kinematics, foot orientation and spatio-temporal parameters including gait speed and step length. Results: Mean age was 10.4 (range 6.8–16.1) years. Eight children were classified as GMFCS level I, eight as II and four as III. Setup of the measurement system took 15 min, acquisition 5–15 min and processing 50 min per child. Using the 2D ML method kinematic deviations from normal could be determined and used to implement the classification of gait pattern, proposed by Rodda et al. 2001. Conclusion: 2D ML assessment is feasible, since it is accessible, easy to perform and well tolerated by the children. The 2D ML adds consistency and quantifies objectively important gait variables. It is both relevant and reasonable to include 2D ML gait assessment in the evaluation of children with CP.

Feasibility and usefulness of video-based markerless two-dimensional automated gait analysis, in providing objective quantification of gait and complementing the evaluation of gait in children with cerebral palsy / Pantzar-Castilla, Evelina; Balta, Diletta; Croce, Ugo Della; Cereatti, Andrea; Riad, Jacques. - In: BMC MUSCULOSKELETAL DISORDERS. - ISSN 1471-2474. - 25:1(2024), pp. 1-12. [10.1186/s12891-024-07853-9]

Feasibility and usefulness of video-based markerless two-dimensional automated gait analysis, in providing objective quantification of gait and complementing the evaluation of gait in children with cerebral palsy

Balta, Diletta;Cereatti, Andrea;
2024

Abstract

Background: Gait analysis aids in evaluation, classification, and follow-up of gait pattern over time in children with cerebral palsy (CP). The analysis of sagittal plane joint kinematics is of special interest to assess flexed knee gait and ankle joint deviations that commonly progress with age and indicate deterioration of gait. Although most children with CP are ambulatory, no objective quantification of gait is currently included in any of the known international follow-up programs. Is video-based 2-dimensional markerless (2D ML) gait analysis with automated processing a feasible and useful tool to quantify deviations, evaluate and classify gait, in children with CP? Methods: Twenty children with bilateral CP with Gross Motor Function Classification Scale (GMFCS) levels I–III, from five regions in Sweden, were included from the national CP registry. A single RGB-Depth video camera, sensitive to depth and contrast, was positioned laterally to a green walkway and background, with four light sources. A previously validated markerless method was employed to estimate sagittal plane hip, knee, ankle kinematics, foot orientation and spatio-temporal parameters including gait speed and step length. Results: Mean age was 10.4 (range 6.8–16.1) years. Eight children were classified as GMFCS level I, eight as II and four as III. Setup of the measurement system took 15 min, acquisition 5–15 min and processing 50 min per child. Using the 2D ML method kinematic deviations from normal could be determined and used to implement the classification of gait pattern, proposed by Rodda et al. 2001. Conclusion: 2D ML assessment is feasible, since it is accessible, easy to perform and well tolerated by the children. The 2D ML adds consistency and quantifies objectively important gait variables. It is both relevant and reasonable to include 2D ML gait assessment in the evaluation of children with CP.
File in questo prodotto:
File Dimensione Formato  
Pantzar-Castilla_et al_2024.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995258