Temperature-responsive biocatalytic hybrid materials offer several advantages, such as improved stability, enhanced catalytic efficiency, and biocatalysts longer lifespan. Combining enzymes with thermoresponsive polymers in a strategically manner allows a smarter modulation of enzyme activity in response to temperature changes. Thermoresponsive materials can act as protective barriers for enzymes or enable controlled exposure and release depending on temperature variations, expanding enzyme applications in diverse environments. This review aims to comprehensively present the design strategies for enzyme-polymer hybrid materials with thermoresponsive properties, and to address the advantages, applications, and challenges involved for a rational control of biocatalytic systems. The study emphasizes the importance of creating stimuli-responsive biocatalytic hybrid materials for diverse applications, ranging from controlled drug delivery to industrial catalysis. Furthermore, we outline key research opportunities and future perspectives for studies within this scope.

Smart Materials for Biocatalysis Regulation through Thermoresponsive Polymers / De Barros, Heloise R.; Theisen, Maíra; Maria Clara Durigon, ; Leite, Daiani C.; Piovan, Leandro; Riegel-Vidotti, Izabel C.. - In: CHEMCATCHEM. - ISSN 1867-3880. - 16:22(2024). [10.1002/cctc.202400699]

Smart Materials for Biocatalysis Regulation through Thermoresponsive Polymers

Heloise R. de Barros;
2024

Abstract

Temperature-responsive biocatalytic hybrid materials offer several advantages, such as improved stability, enhanced catalytic efficiency, and biocatalysts longer lifespan. Combining enzymes with thermoresponsive polymers in a strategically manner allows a smarter modulation of enzyme activity in response to temperature changes. Thermoresponsive materials can act as protective barriers for enzymes or enable controlled exposure and release depending on temperature variations, expanding enzyme applications in diverse environments. This review aims to comprehensively present the design strategies for enzyme-polymer hybrid materials with thermoresponsive properties, and to address the advantages, applications, and challenges involved for a rational control of biocatalytic systems. The study emphasizes the importance of creating stimuli-responsive biocatalytic hybrid materials for diverse applications, ranging from controlled drug delivery to industrial catalysis. Furthermore, we outline key research opportunities and future perspectives for studies within this scope.
2024
File in questo prodotto:
File Dimensione Formato  
ChemCatChem - 2024 - Barros - Smart Materials for Biocatalysis Regulation through Thermoresponsive Polymers.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995221